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MoDeST Framework

A Modeling and Description Language for Stochastic and Timed Systems.

• A Language Framework developed at the FMG group of Twente University.

• A general specification meta-language for describing the behavior of discrete event
systems.

• Will include primitives for describing timed, probabilistic, stochastic and hybrid systems.

• Translations to the well-known formalisms like UPPAAL, SPIN, CADP, MÖBIUS, µCRL,
etc., should enable efficient analysis.
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The CYBERNETICS Case Study

• Has been provided by C (France).

• Deals with a card personalization conveyor.

• The goal is in finding an optimal schedule.

• An idea is in trying model checking techniques for timed systems.
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Some Approaches to the CYBERNETICS CS (related to MoDeST)

• An SMV model by Biniam Gebremichael (KUN, The Netherlands).

• An UPPAAL model by Tomas Krilavičius (UT, The Netherlands).

• A similar model in SPIN by Theo Ruys (UT, The Netherlands).

• Two µCRL models, similar to the models of Biniam and Tomas, respectively.

What does similar mean? Why are these models related to MoDeST?
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µCRL Language

µCRL is based on process algebra and algebraic (equational) data types.

Specification structure:

• data types definitions (sort, func, map, rew)

• actions and communication functions definitions (act, comm)

• process definitions (proc): equations involving:
p ::= a(−→t ) | δ | Y(−→t ) | p + p | p · p | p ‖ p |

∑
d:D p | p C c B p | τI(p) | ∂H(p) | ρR(p)

• initial state (init).

Extensions to process algebra:

• action parameterized by data (a(d) | b(e) ≈ c(d) C d = e B δ),

•
∑

d:D p and x C c B y

• systems of parameterized recursion equations.
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Overview of the µCRL Toolset

CADP

Specification Text

SVC

simulation

visualisationmodel checking

LPElinearizer pretty printer

minimization
confluence reduction

FLTS

optimization
stategraph
invelm

reachelm
confelm

structelm
parelm

sumelm
constelm

decluster

formula checking

formcheck invcheck
confcheck

instantiator (deadlock checking, confluence reduction)

rewr

model checking

comparison

µCRL

Aterm
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The CYBERNETIX CS in µCRL

UnLoader LoaderStation1 Station2 Station3 Station4

reduce
tick

reduce
tickpick

drop reduce

tickunload
unlock

load

unlock

error
done
shift

Conveyor

What are the differences between the models of Beniam and Tomas?
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Modeling Time in µCRL

• The passage of time is modeled by an action tick (one time unit has passed).
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Modeling Time in µCRL

• The passage of time is modeled by an action tick (one time unit has passed).

• All processes in the system synchronize to this action by means of multi-party
communication.

• Technically, this is achieved by using action renaming and synchronous communication.
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Analysis of the µCRL Models

• Both models have been analyzed by means of performing a breadth-first search for a
deadlock. (a shortest path to a deadlock is an optimal schedule)

• For the model similar to Beniam’s we could analyze the system with 4 personalization
station and 6 card. No comparison of the resulting schedules (October 2002).

• For the model similar to Tomas’ we could analyze all the systems presented by Tomas and
Theo on the previous AMETIST meetings in Twente and Dortmund, respectively.

• For the case of 4 stations and 8 cards we could find an optimal schedule which is 1 tick
better than the one found by Theo (46 instead of 47 ticks).
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• By an ad-hoc analysis of the problem it became apparent that the system repeats itself
after processing a number of cards.
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Finding an Optimal Loop

• By an ad-hoc analysis of the problem it became apparent that the system repeats itself
after processing a number of cards.

• The only difference is that all card numbers in the system are bigger by 1, and the current
time value is also bigger.

• In the model we do not store the global time.

• After each loaded card we decrease each card number in the system (on the conveyor, in
the stations, the next card to be loaded) by 1. This is done by synchronizing all processes
on reduce action.
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Finding an Optimal Loop (cont.)

• We generated a Labeled Transition System (LTS) containing all behaviors of the model with
4 cards. It has 9.9M states and 17.5M transitions. (Generated in approx 1h on an Athlon
1.4GHz machine with 2Gb of RAM).
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Finding an Optimal Loop (cont.)

• We generated a Labeled Transition System (LTS) containing all behaviors of the model with
4 cards. It has 9.9M states and 17.5M transitions. (Generated in approx 1h on an Athlon
1.4GHz machine with 2Gb of RAM).

• Finding an optimal (maximal number of load actions per one tick action) loop that starts
and ends with a load action in this LTS, and finding an optimal path to it, could give us
optimal schedules for any card number.

• The future plans are finding these optimal loops and trying to analyze the model with 5 or
more stations in this way.
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Conclusions on the CYBERNETICS CS

• The general formulation of the case study is hard to tackle by the existing automated model
checking techniques. Therefore it is not feasible to come up with an industrial tool that
would solve such a problem out of the box.
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Conclusions on the CYBERNETICS CS

• The general formulation of the case study is hard to tackle by the existing automated model
checking techniques. Therefore it is not feasible to come up with an industrial tool that
would solve such a problem out of the box.

• Fixing a particular concrete formulation of the case study allows the academic partners to
compare the tools and techniques by trying to find concrete optimal schedules.

11



TERMA CS Results
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