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ABSTRACT

Car Periphery Supervision (CPS) systems comprise a
family of automotive systems that are based on sensors
installed around the vehicle to monitor its environment.
The measurement and evaluation of sensor data
enables the realization of several kinds of higher level
applications such as parking assistance or blind spot
detection. Although a lot of similarity can be identified
among CPS applications, these systems are traditionally
built separately. Usually, each single system is built with
its own electronic control unit, and it is likely that the
application software is bound to the controller’s
hardware. Current systems engineering therefore often
leads to a large number of inflexible, dedicated systems
in the automobile that together consume a large amount
of power, weight, and installation space and produce
high manufacturing and maintenance costs.

This paper reports on an initiative undertaken by the
Bosch Group in applying a product line development
approach to develop CPS systems economically.
Product line development represents a multi-system
engineering approach which takes common and variable
aspects between systems in the same application
domain into account. It provides a basis to develop a
line of products economically based on a common
system architecture and reusable components.

A product line allows the degree of reusability to be
optimized across different systems while simultaneously
preserving the overall quality. This supports the need to
develop more integrated and flexible multi-functional
systems quickly and cost-effectively. The purpose of this
paper is to report on the experiences and results
obtained from a case study in developing a product line
of CPS systems.

1 INTRODUCTION

The Bosch Group is a large electronics manufacturer
that specializes in producing components and systems
for automobiles. Bosch has several business divisions
that develop systems for the automotive equipment
market, ranging from braking systems, engine
management and fuel-injection systems to body
electronics, semiconductors and control units, starters
and alternators, and mobile communication systems.

Several departments of the automotive equipment
business sector are developing systems that are based
on short range sensor technology. These systems are
called Car Periphery Supervision (CPS) systems. CPS
systems can be characterized as a family of automotive
products that are based on sensors installed around the
vehicle to monitor its local environment. Different sensor
measurement methods and evaluation mechanisms
enable the realization of various kinds of higher level
applications which guarantee more safety and comfort
for car drivers. Examples of such applications are
parking assistance, automatic detection of objects in
vehicles’ blind spots and the adaptive control of airbags
and seatbelt tensioners.

Advanced research and development in this field has
uncovered a significant amount of commonality between
sensor systems of the CPS application domain. For
example, each CPS system typically requests, filters,
and evaluates data from sensors while at the same time
performing diagnostic, availability tests, and consistency
checks. A common platform which would provide such
services and which could be shared by every CPS
system would allow a high degree of reusability. By
reusing software and hardware subsystems,
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parameterizing generic parts, and plugging in individual
functionality, the platform would serve as a basis for
faster and more cost-effective development of CPS
system variants. However, to achieve a system platform
with the properties outlined above, one has to follow a
systematic and reuse-oriented development process.

The case study presented in this paper reports on an
initiative undertaken by Robert Bosch Corporate
Research and Development and several business
departments in applying a product line development
approach to develop CPS systems economically.
Product line development represents a multi-system
engineering approach which takes common and variable
aspects among systems in the same application domain
into account. It provides a basis for economically
developing a line of products based on a common
system platform. In this context, a platform consists of a
set of subsystems and interfaces that form a common
structure from which a stream of derivative products can
be efficiently created and launched. This allows the
degree of reusability to be optimized across different
systems in the CPS application domain while
simultaneously preserving the overall quality. It also
supports the need for a fast and cost-effective
development.

The remainder of this paper is organized as follows:
Chapter 2 introduces the various applications of a CPS
product family. In Chapter 3, the motivation and
objectives in applying a product line approach for CPS
systems are outlined. A short overview on product line
engineering is given in Chapter 4. Furthermore, major
results obtained from the CPS product line case study
are presented. The validation plan of the case study is
explained in Chapter 5. Finally, Chapter 6 concludes
with a short summary.

2 CAR PERIPHERY SUPERVISION SYSTEMS

To date, applications of the CPS domain are built as
separate systems with the consequence that each one
needs its own set of sensors, controllers, busses,
hardware interfaces, application and device driver
software, and so on. As mentioned in the introduction, a
base system would give applications the opportunity to
directly evaluate data from different sensors. Many
applications that evaluate sensor data do not depend to
specific types of sensors but are able to share the
information from sensors installed around a vehicle.
Considering that at present the number of sensors in a
bumper is restricted, the shared usage of sensors
becomes inevitable. This was one of the reasons why a
product line development approach was adopted for this
effort.

Before going into more technical details, let us first
characterize the spectrum of applications that are
addressed in this case study. Figure 1 illustrates the four
underlying safety- and comfort-related application areas
pre-crash detection, parking assistance, blind spot
detection, and stop & go that are the focus of this case
study.
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Figure 1: Applications of Car Periphery Supervision

Please refer to the following subsections for a brief
description of these application areas.

2.1 Pre-Crash Detection

Current safety devices in cars are triggered by sensors
that detect strong (negative) acceleration. The crash is
detected as it happens, and all further actions must be
taken very fast – e.g., firing of airbags. Sensors can be
used for detecting an object very close to the car, its
relative velocity, and its acceleration. Based on this
information, it is possible to estimate the time, area, and
direction of an impact even before the crash happens.
These kinds of estimations are provided by pre-crash
detection (PCD) systems. A PCD system delivers more
precise information and delivers it earlier than current
crash detection systems. This advantage enables these
systems to be used in adaptations of airbag firing and
seatbelt tensioning. For example, the trigger points of a
specific airbag in different locations in the car (e.g., front
and side) can be adjusted appropriately for the
estimated crash situation.

Initial implementations of PCD systems use two distance
barriers. Only objects entering the outer barrier will be
monitored by the system. As soon as an object breaks
through the inner barrier, the calculated crash impact will
be reported to the air bag control unit. The appropriate
proximity of the car must be supervised in order to
provide this functionality, that is, the front for frontal
accidents, the sides of the passenger cabin for side
accidents. The measurement must be quite fast to be
able to deal with relative vehicle/object speeds of up to
200 km/h. Combined with the fact that the system has to
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work under bad environmental conditions, the choice of
possible measurement principles is restricted.

2.2 Parking Assistance

The basic idea behind parking assistance (PA) is to
inform the driver about the distance between the vehicle
and potential obstacles around the vehicle while the
vehicle is moving slowly backward or forward. One goal
of this application is to support the driver in avoiding
scraping the vehicle against people or stationary
objects. This is especially useful since most vehicles are
difficult to look over and low obstacles are therefore hard
to see for the driver.

Technically speaking, the car periphery is supervised
using short range sensors. Usually, the different sensor
signals are combined and the resulting distances to
obstacles are displayed to the driver. If a vehicle comes
close to an obstacle, the driver gets a warning – visually
or acoustically. As a variant of PA, semi-autonomous
parking systems assist the driver in backing the car into
a typical parking spot. In this case, the sensors are also
used to determine the size of the parking space. The
system then computes the optimal track for
maneuvering the vehicle into the spot and guides the
driver by giving steering indications.

2.3 Blind Spot Detection

The main objective of applications based on blind spot
detection (BSD) is to reliably detect and inform the driver
of vehicles in the central blind spot region. A blind spot
situation occurs when another vehicle slowly enters the
blind spot region of the vehicle while passing it. The
blind spot region is the spot where a passing vehicle is
no longer visible with conventional mirrors.

A solution to the blind spot problem is achieved by using
lateral front and rear sensors for detecting passing
vehicles. The rear sensors observe the central blind spot
region, whereas the front sensors discriminate irrelevant
warnings. The detection of irrelevant signals is
necessary to guarantee immunity of false warnings such
as stationary obstacles, on-coming vehicles, and so on.
For BSD, the sensor technology used must reliably
supervise a proximity of about 5 m on each side of the
vehicle. Visual or acoustical warnings are conceivable
for informing the driver of vehicles in the blind spot. The
acoustical warning signal may be intensified if the
system detects that the driver wants to change lanes
while a vehicle is in the blind spot. The activation of the
turn signal may be used as a proxy for the intention to
change lanes.

2.4 Adaptive Cruise Control (Stop & Go)

Car drivers focus a great deal of their attention on
maintaining the correct distance from the vehicle ahead.
Bosch has developed adaptive cruise control (ACC) to
relieve the driver from this task. At first glance, ACC
seems similar to traditional cruise control systems. The
subtle difference is that ACC systems automatically
adjust vehicle speed by measuring the distance and
relative speed of the vehicle driving ahead. The
additional capabilities of ACC include reacting to traffic
events by accelerating and decelerating and, if
necessary, by braking. This has been possible since the
development of traction control and electronic stability
systems. Together with the functionality of a automatic
braking system, ACC systems are able to create brake
pressure independently of the driver. Technically
speaking, ACC is based less on conventional cruise
control than on the function of brake, traction, and
dynamics control systems.

If a slower-moving car appears in the lane ahead of an
ACC-equipped car, the system reduces speed, first by
decelerating and then, if necessary, by braking. The
ACC vehicle then follows the lead vehicle at a consistent
distance. If a vehicle cuts in or out of the ACC’s sensing
range, the system automatically selects the new relevant
object. If the driving lane is open, the vehicle is
accelerated to the pre-selected speed via ACC.
Currently, the first generation of ACC systems have
been introduced in the market. This generation covers
long range applications and is suitable for high velocity
traffic, as is usual on freeways. Future generations of
ACC will cover medium distances with broader sensor
scattering as well as short-range supervision. The latter
would address stop-and-go traffic, e.g., in cities, which is
sometimes called ACC stop & go (S&G).

3 MOTIVATION FOR A CPS PRODUCT LINE

As one can easily imagine from the preceding
discussion, the different systems that can be created in
the CPS application domain have much in common.
One objective of the CPS case study is to identify these
similarities and to build a common platform from which a
set of derivative products can be efficiently developed
and launched to the market. For example, consider a
system platform which exploits the following reuse
characteristics:

• Hardware: Reuse of sensors for monitoring the
environment as well as reuse of electronic control
units for interfacing with other hardware components
and for executing the software.
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• Software: Reuse of software subsystems for
measurement, transformation, evaluation, and
display of sensor data to enable higher level
applications.

These reuse characteristics of a CPS system platform
would count for the following benefits:

• Lower software development costs and higher
quality due to reuse of a qualified architecture and
tested software components in different product
variants.

• Lower hardware costs and integration space and
less weight due to reduction of electronic control
units for processing the sensor data.

• Faster time-to-market due to focusing development
on local, application-specific problems that do not
affect the whole architectural infrastructure of the
platform (delta development).

Another objective of this case study is to identify and
understand the different customer requirements as well
as requirements and constraints that arise from market
analyses and from the opportunities and limitations of
the underlying technology. As a result, the commonality
and, especially, the variability of the various CPS
systems should be described.

From a technical viewpoint, for example, variability
arises because different sensor technologies, different
numbers of sensors, different positions and alignment of
sensors, and different types of measurements,
transformations, and evaluation metrics are necessary
to create CPS system variants. Selecting sensor
technology as a sample dimension, the following range
of candidate sensors may be considered for developing
CPS variants:

• Ultrasonic sensors are suitable for short range
distance measurements at low speed. This kind of
sensors was the first to be used in car electronics.
They do not provide speed measurements and have
a restricted resolution.

• Laser-based sensors use either triangulation or a
scanning method to derive distance information.
They are not very suitable in the car electronics
domain due to restrictions to a low laser emission
classification and due to easy jamming by mud and
dirt.

• Microwave or radar sensors offer many advantages
in the car electronics domain. They measure faster
and more accurately than ultrasonic sensors and
they can be customized with different wave lengths

for various measurement ranges (e.g., 60-80 GHz
for long range, 20-30 GHz for short range). These
kinds of sensors have different operation modes –
e.g., distance, speed, or object tracking modes.
Moreover, microwave sensors are reliable in bad
weather situations and can be mounted behind the
car body.

• Video sensors assist the driver with a video picture
of a view that is blocked or is invisible due to
darkness or bad weather.

Please note that ultrasonic and microwave are the most
important sensor technologies for the current generation
of CPS systems.

Finally, getting a clear picture about the required (i.e.,
customer-driven) and technologically feasible variants is
very important for planning the introduction of CPS
products in different markets. Various strategies are
possible, ranging from niche-specific products to
horizontal leverage and vertical scaling of products. For
example, if a horizontal leverage strategy is applied,
products are leveraged from one market niche to the
next within a given tier of price and performance, as
shown in Figure 2.
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Figure 2: Horizontal Leverage

The benefit of a horizontal leverage strategy is that a
company is able to introduce streams of new products
across a series of related customer groups without
having to reinvent the wheel for each. Further, if
particular subsystems can be designed to provide a
distinctive functional advantage over competitors, the
entire product line will benefit. Additionally, for
manufacturing, procurement and retooling costs can be
minimized when new products are introduced into the
line.
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4 CPS PRODUCT LINE ENGINEERING

A product line is a set of products that together address
a particular market segment or fulfill a particular mission
[2]. Product lines are efficiently developed based on
product platforms. Generally speaking, a product
platform consists of a set of subsystems and interfaces
that form a common structure from which a stream of
derivative products (i.e., the product line) can be
efficiently created and launched. Usually, a product line
is part of a technical domain. A domain can be defined
as an abstraction that groups a set of software systems,
or some functional areas within systems according to a
domain definition shared by a community of
stakeholders [19]. The domain can be considered to
include not only the shared terminology and definitions,
but the coherent body of knowledge about domain
systems shared by that community. A product line
usually covers only parts of a domain. The parts that are
actually included in a line of products are defined by the
product line scope. The scope specifies the boundaries
of the product line, i.e., the functionality that must be
provided. Therefore, the scope describes in which
context the assets will be reused in future. All products
derived from the product line assets are called variants.
An asset is a work product developed or reengineered
for reuse and placed under management within an asset
base. The product platform is defined by the set of core
assets. Assets can be developed based on work
products from any phase of the engineering life cycle,
including requirements, architectural design, code, test
cases, and so on.

A growing research community exists in the field of
software product lines [1, 2, 5, 6, 8, 9, 12] although most
of the underlying concepts are known from traditional
manufacturing. As illustrated in Figure 3, product line
engineering consists of three intertwined development
processes running in parallel: domain engineering,
product engineering, and management. Domain
engineering is a development-for-reuse process and
focuses on the analysis, specification, and
implementation of assets in a particular domain for use
in the development of multiple software-based products.
In the context of product line development, product
engineering is a development-with-reuse process. It
uses the assets supplied by the domain engineering
process (e.g., software components) to build new
products. Product engineers typically compare customer
requirements for a product with the capabilities of
existing assets in the asset base and pick those assets
ones that fit best. They generate a new member of the
product line by combining assets. In case a requirement
cannot be satisfied by the set of existing assets, the
product engineer has to provide a realization for it. It is

likely the case that a customer requirement is bound to a
special feature in a particular product and that it does
not influence the whole product line.
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Figure 3: Product Line Process Families

In addition, support of further management processes is
required for product line engineering. For example,
project and change management are needed for domain
and product engineering. Furthermore, asset
management focuses on the issue of how to implement
and run the interface between domain engineering and
product development. Currently, the technical key to
providing an interface between these processes is the
asset repository.
In the following subsection we describe parts of the
product line engineering process we have applied in the
CPS case study.

4.1 Scoping

One of the major goals of scoping is to define the
boundaries of the product line domain [5]. Scoping
provides information about what capabilities are
regarded to be “inside” and “outside” the product line. In
our context, the objective of performing a scoping phase
was to identify the business, organizational, technical,
and legal requirements and constraints that are
characteristic to CPS. Typical inputs for scoping are
descriptions of existing products, marketing analyses,
expert knowledge as well as business strategies for
introducing the new products into the market. In order to
define the scope of the CPS product line, we first
interviewed management and investigated the business
together with marketing and sales personnel. As a
result, we obtained an initial sketch of the business case
for the CPS product line effort. Furthermore, we
described the characteristics of legacy and competitor
products as well as future extensions to existing
products. Finally, we analyzed standards and
technology drivers that were related to the products
under consideration, as defined in the business case.
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As a result of these activities, we obtained an initial
understanding of the functional scope for the CPS
product line, as illustrated in Figure 4.

Powertrain Restraint System Body and Interior

Human-Machine
Interface

Cruise Control
Support

Sensor Operation
and Calibration

Monitoring and
Diagnosis

Pre-Crash Detection

Parking Assistance

Side Object and
Blind-Spot Detection

Car Periphery Supervision

Figure 4: Preliminary Scope of the CPS Product Line

In particular, we identified seven core functional areas
(human-machine interface, parking assistance, pre-
crash detection, cruise control support, side object and
blind-spot detection, monitoring and diagnosis, and
sensor operation and calibration) and three borderline
functional areas (powertrain, restraint system, and body
and interior) as being part of the scope for CPS.

4.2 Requirements Analysis and Modeling

To understand the requirements for the scoped CPS
product line in more depth, we went through a domain
analysis phase. As a first step, we gathered, described,
and classified the customer requirements for different
CPS variants. We noted whether each requirement was
of purely functional nature, whether it was quality-
related, or if it described certain constraints on the
design of a system variant. A functional requirement
specifies actions that a system must be able to perform,
regardless of taking physical constraints under
consideration. Quality requirements are requirements
that describe how certain quality attributes such as
reliability, safety, performance, portability, or modifiability
shall be satisfied by a system. Figure 5 shows a quality
tree for the quality requirement modifiability which can
loosely be defined as “the ability to make changes
quickly and cost effectively” [10]. For each quality
requirement we noted the specific goals of how it could
be achieved in the CPS context as well as existing
constraints and associated functional requirements. In
Figure 5, goals are represented by the label “G”,
whereas the labels “C” and “F” are provided for
constraints and related functional requirements,
respectively. Note that we applied the approach
described in [20] to specify and detail the CPS quality
requirements.

Figure 5: Quality Tree for Modifiability

As mentioned above, a constraint specifies or constrains
the design of a system. Examples of such design
constraints are implementation, physical, and interface
constraints. Implementation constraints specify the
coding or construction of a system (e.g., implementation
languages or operation environments). A physical
constraint specifies a physical characteristic that a
system must possess – for example, material, shape,
size, or weight. An interface constraint specifies an
external item with which a system must interact, or
constraints on formats, timings, or other factors used by
such an interaction.

In order to make the elicited requirements more
concrete, and to explore the CPS functionality in detail,
we performed a domain modeling step as proposed in
[5]. To this end, we brainstormed a representative set of
use cases and synthesized functional capabilities
(services) and actors from the requirements. The use
cases were then modeled based on the services
identified which lead to a refinement of capabilities and,
consequently, to a refinement of the CPS product line
scope. Next you will find a list of sample services and
actors we have identified as a result of our domain
modeling iteration:

• Human-machine interface (boundary service): This
service represents the interface to the user. It
provides the entire functionality for all input/output
interactions.

• CPS control (core service): The control service
coordinates the functionality of the CPS system. In
particular, it controls the operation modes of the
sensors and determines the way in which the sensor
data are analyzed. Furthermore, the service
manages the resources considering the driver's
intention, the state of the car, and the environment.
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• Data analysis (core service): The data analysis
service processes data from the sensors (e.g.,
distance and velocity). It assesses the situation and
generates an environment description.

• Output derivation (core service): The service
calculates the CPS response, e.g., the distance to
closest object or the time-to-impact.

• Sensor (boundary service): This entity represents
sensors. The CPS uses one-dimensional microwave
and ultrasonic sensors that provide distance and
velocity values. The measurement output of each
sensor depends on different operation modes.

• Car state (boundary service): This service interfaces
the CPS system to external systems that provide
gear information, vehicle speed, steering angle, turn
signal state, and ignition state.

• Restraint system (boundary service): Interfaces the
CPS system to an external restraint system.

• Powertrain (boundary service): This service provides
an interface to the brake and motor control.

• Driver and Environment (actors): The driver is the
person who steers the vehicle, whereas the
environment is a placeholder for the environmental
condition around the vehicle that can be observed
by a CPS system. Pedestrians and cars, for
example, are part of the environment.

Each use case can now be “simulated” based on the
service and actor descriptions. This leads to a better
understanding of the product line functionality. It also
helps in uncovering “hidden” requirements. For example,
consider the generic use case “request a CPS
functionality” and its associated use case model, as
represented in the collaboration diagram of Figure 6.
This model shows interactions between actors and
services for the specific use case, thus making its
functionality more concrete. The model is read as
follows: A user, for example the driver, requests a CPS
functionality at the human-machine interface (1). This
request is forwarded to the CPS control (2). Based on
the car state (3), the CPS control determines the
appropriate sensor operation (4), the required analysis
algorithms (5), and the output derivation mechanisms
(6). Signals emitted by the sensors (7) are reflected by
the environment and the responses (8) are detected.
The sensors provide their data for the analysis step (9),
in which the situation is assessed according to the
requested application. As a result, an environment
description is forwarded to the output derivation service
(10) and the CPS control (11). Based on the analysis
results, the output derivation service provides the
restraint system and powertrain with crash estimates
(12) and distance to object information, respectively
(13). Finally, the derivation results are forwarded to the
human-machine interface (14) and the driver is informed
about the new status (15).
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4.3 Feature Modeling

To represent commonality and variability within the
requirements of the CPS domain more explicitly, we
used and refined the concept of feature modeling, as
introduced in the FODA (Feature-Oriented Domain
Analysis) method [3, 4]. In FODA, a feature is
understood as a prominent or distinctive user-visible
aspect, quality or characteristic of one or more software
systems. Features can be interrelated by several types
of links that essentially establish a tree structure with
mandatory, alternative, and optional branches.
Composition rules define valid combinations of optional
and alternative features. In addition, we used rationales
to express the concerns that are connected with feature
selections. Together, the feature tree, the composition
rules, and the rationales form the feature model.

One goal of domain analysis is to build an abstract
model that can be used as a starting point for the
derivation of specific product variants. The feature
model is predestined to play this role, as it captures the
decisions that have to be made to determine the
individual characteristics of a concrete system.
Application derivation starts with the elimination of the
domain variability step by step through the instantiation
of a subset of all potential features. In order to
completely derive an application, i.e., one single product
variant, all variability must be resolved. Nevertheless,
variable products can be derived through partial
derivation which leaves some selections open.

Feature modeling is advantageous for product line
engineering in several ways:

• Control over variability. All variants of products in the
domain and their relationships are represented in a
comprehensive and understandable form.

• Configuration support. As features are linked to
modeling items in later development phases,
application derivation through selection of
combinations of variants can be used to support
configuration right up to product code.

• Sales support. Sales representatives have a high-
level basis for discussions over product tradeoffs
with customers.

• Support for new development. When a new product
is to be developed, feature modeling simplifies the
analysis of how it differs from existing ones.

A small part of the feature model for the CPS domain is
illustrated in Figure 7. It shows an extract of the
capabilities that can be incorporated into a product
variant of the CPS product line. For clarity reasons,
feature types and dependencies are not shown in the
model. As an example, one could select the front
supervision service to be included in the product variant
in order to realize a pre-crash system. In a second step,
front supervision capabilities can further be specified by,
for example, defining the exact geometry of the
supervision range. This can be done, for example, by
choosing different kinds of measurements to be
performed. Note that the quality tree and the use case
models described in the previous sections provide
guidance in obtaining the set of features and the
associated composition rules for the products in the
CPS domain.

Figure 7: Partial CPS Feature Model
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4.4 Architecting and Design

At the end of the first domain analysis iteration for CPS
as described above, the scope of the product line had
been refined. In particular, the functional and quality
requirements as well as their similarities and differences
were documented. This information formed the basis of
the architectural design iteration.

An architecture describes the overall technical structure
of a system. It consists of software and hardware
components and connectors as well as compositions of
them. An architecture represents the manifestation of
the earliest design decisions about a system and is an
opportunity for an early validation of the design
decisions with respect to qualities [10]. We used the
Architecture Based Design (ABD) method [11],
developed collaboratively with the Software Engineering
Institute [5], to define the conceptual architecture of the
CPS product line. The ABD method considers
functional, quality, and business requirements at an
abstraction level which allows for the variation
necessary when producing specific products of the
product line. Its application relies on an understanding of
the architectural mechanisms and styles [12, 13, 14, 15]
necessary to achieve this flexibility. The method
provides a series of steps for designing a conceptual
system architecture. The conceptual architecture
provides organization of functionality, identification of
synchronization points for independent threads of
control, and allocation of function to processing units.

Within this case study, a basic high-level architecture
was developed that enables the use of one set of
sensors for multiple concurrent applications as well as

the control of the focus of sensors in specific situations.
One restriction that arises is that only a limited number
of sensors can be mounted in a vehicle which means
that it will be necessary in the future to share sensors
over concurrent applications. Moreover, new
generations of CPS applications require improved
sensor control so that specific objects can be tracked
within a given supervision range.

In order to use particular measurements and provisional
results repeatedly, the measurement data processing
was split into several steps that are realized by
subsystems with defined interfaces, as illustrated in
Figure 8. Furthermore, a control subsystem was
introduced to organize the measurement data
processing of single or multiple applications including
prioritization. The control subsystem uses a situation
subsystem to determine the next steps. The latter
evaluates conditions that define possible situations of a
vehicle related to its environment (e.g., “normal” or “pre-
crash situation”). The current state of the situation
subsystem is obtained from sensor measurements and
external events (e.g., shifting into reverse gear).

The repeated use of measurements and provisional
results is equivalent to a repeated use of sensors and
parts of algorithms. Introducing the situation subsystem
also enables the specific control of resources (sensors,
processor time) for both single applications and
combinations of applications with different priorities. In
addition, coupling the current situation to the results of
the sensor measurements allows adjustments of the
range of subsequent measurements (focus control) and
successive objects (object tracking) for particular
applications.

Control

Display and 
user interface

<<optional>>EvaluationTransfo rmationMeas urem ent

Si tuation

<<optional>>

<<optional>>

External event

Figure 8: Conceptual Platform Architecture
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The conceptual CPS architecture depicted in Figure 8
was developed by considering the CARTRONIC
architectural style [17]. It consists of several high-level
subsystems and dependency-relationships, represented
in UML notation. The responsibilities of the subsystems
can be summarized as follows:

• Measurement: This subsystem encapsulates all
details that are related to sensor measurement. It
can be thought of as a hardware capsule that
provides an interface for controlling the
measurement and for preprocessing the
measurement data.

• Transformation: This subsystem transforms the
measurement data into a description of the vehicle’s
environment.

• Evaluation: This subsystem analyzes the
environment description with respect to the active
application – for example, parking assistance or pre-
crash detection.

• Display and user interface: This subsystem is used
by applications such as parking assistance to inform
the user about evaluation results, e.g., the distance
to the next obstacle, and about the status of the
CPS system. The subsystem can be seen as
optional since it not required in every CPS product
variant.

• Situation: This subsystem contains descriptions of
normal and exceptional situations and priority
regulations for resource conflict resolution between
several applications. It can be represented by a
state machine and uses external events and
evaluation results to determine its current state.

• Control: According to the CARTRONIC style used in
automotive systems, the control subsystem
coordinates other subsystems. In particular, it
determines the order of computing steps depending
on the respective situation.

Figure 9 shows an example of component reuse for
different kinds of products. As explained above, the
measurement subsystem includes components for
measuring distance and velocity. Slow, fast, and
dangerous objects can be detected by the
corresponding components in the transformation
subsystem. As illustrated in Figure 9, these five
components can be used to create different product
variants. For example, the distance measurement and
slow object detection components can be (re)used in
parking assistance, ACC stop & go, and pre-crash
detection systems (and, of course, combinations and
variants of these systems).

TransformationMeasurement

Velocity
Measurement

Distance
Measurement

Slow Objects
Detection

Fast Objects
Detection

Dangerous Objects
Detection

Parking
Assistance

ACC Stop & Go

Pre-Crash
Detection

Sample Products

Figure 9: CPS Component Reuse Example

Altogether, the basic CPS architecture allows modular
control of the measurement system. Depending on the
current application, the corresponding subsystems and
components are activated. Finally, it is possible to
integrate other applications into the system by adding
the corresponding evaluation mechanisms.

5 EMPIRICAL VALIDATION

Business needs and the technical evolution of
information technology (IT) in cars stimulates Bosch
Corporate Research and Development to invest in
product line technology. In 1997, investigations were
commenced on the application of a product line
approach for automotive electronics systems [5, 7]. After
acquiring the basic knowledge and processes, the
approach is now used in several development projects.
One of these projects is covered by this case study.
Among other objectives, it shall evaluate the feasibility
and benefits of product line development for Bosch in
the CPS application domain. In particular, the following
assumptions shall be verified:

• Product lines are appropriate to deal with increasing
complexity, safety, security, reliability, performance,
and cost concerns for IT in cars.

• Domain engineering supports reuse in order to
shorten time to market during product development
and to increase the quality of products.

• The initial investment for domain engineering pays
off for a product line.

These assumptions can be used to derive finer grained
measurement goals that can be verified by using the
Goal-Question-Metric (GQM) approach [18]. After
applying the GQM method, the measurement goals (G)
are refined into questions (Q) and consecutively into
metrics (M) which will supply necessary information for
answering those questions. The GQM method thus
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provides a measurement plan that deals with the
particular set of problems and the set of rules obtained
for data interpretation. The interpretation gives answers
if and to what extent the stated goals could be attained.

To understand the application of the GQM approach in
the CPS context, consider the examples given in the
following two subsections.

5.1 GQM Validation Example: Sensor Sharing

Goal
The CPS platform shall support sensor sharing to save
costs, installation space, power consumption, and
weight in a car.

Questions
On which system level is sensor sharing measured?
What is a baseline for a comparison? Does a maximum
degree of sensor sharing lead to lowest costs, volume,
power consumption, and weight? Which overhead is
created by sensor sharing, if any? What is the cost for
shared sensors in CPS? What would be the cost to
implement the same functionality if no sensor sharing
could be achieved?

Metrics
For example, basic data can be provided by calculating
the sensor utilization (su) which takes the number of
available sensors and the number of sensors used by
each application into account:

�=
i

i

n
n

I
su 1:

=in  number of sensors used by application i
=n  number of sensors installed in the car
=I  number of applications installed.

If the degree of sensor sharing is high, the value for su
will be close to 1. Current engineering efforts show that
sensor sharing can likely be achieved at different levels
for the CPS product line. In order to gain economy,
volume, power consumption, weight, and hardware
costs must be lower for platform-based solutions than
for separated systems which has to be proven in future
investigations.

5.2 GQM Validation Example: Time-to-Market

Goal
The CPS products shall be implemented as a product
line (i.e., based on a common platform architecture) in
order to allow an easy and quick product construction.

Question
What is the average time required for building a CPS
product variant for the high-end, low-end, and mid-range
market?

Metrics
The rate for product realization can be measured by
taking the degree of reusability into account. Software
reusability, for example, can be tracked on functionality
and product level. In Figure 10, a hypothetical example
for reusability measurement based on code size is
given. As one can see, the software size is measured in
1000 lines of code (kLOC).

Product
Functionality 1 2 3 4 5
Parking Pilot 30 32 32 32 32
Parking Assistant 35 39 40 40
Parking Place Survey 20 22 22
Blind Spot Detection 17
Pre-Crash Detection 60 60 60
Total kLOC 145 71 132 124 121

Legend
kLOC new:  

kLOC reused & changed:  
kLOC reused:  

Figure 10: Hypothetical Reusability Matrix

Within a reuse-oriented and platform-based
development effort, time-to-market is expected to be
significantly shorter than in traditional product
development once that the reusable asset base is
established.

5.3 Special Measurement Problems

Many goals for product line engineering are the same as
for traditional project and organizational management.
However, regarding the decision to adopt a product line
approach, a lot of obvious benefits do not have
associated measures, like the institutionalization of
domain knowledge from experts into assets. Special
problems that make quantitative measurement difficult
include the following:

• Product cost needs allocation from asset
development otherwise asset development charges
product development for their work. What is the
associated time frame for the cost calculation?

• Aggregating measurements across multiple
products may be misleading, as different scales,
distributions (e.g., defect densities) or double-
counting properties across products (e.g., errors in
assets) might be used.
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• The level of granularity of measures can vary from
very fine to very coarse (e.g., features vs. collection
of products). It is difficult to decide in advance which
level will help to verify the goals that have to be met.

• It is hard to collect measures consistently across
product line projects. Reasons for this are, for
example, different products, people, processes,
time, and history effects.

Note that the empirical validation plan could be sketched
here only briefly. This plan is under execution and we
are expecting more quantitative results in the near
future. As soon as further results are available, we will
cover this topic in more depth.

6 SUMMARY AND CONCLUSIONS

In this paper, we have presented results obtained from a
case study in developing a product line for Car
Periphery Supervision systems. In particular, we
outlined the safety- and comfort-related application
areas of CPS systems and demonstrated the motivation
to apply a product line development approach for
building such systems. Furthermore, we described
results from the product line scoping phase and gave
insights into requirements analysis and feature
modeling. In addition, we outlined the conceptual
platform architecture which has been defined in the first
iteration of the product line engineering process. Finally,
we presented a small part of our validation plan.

Since work of this case study is very much in progress,
we expect a refinement of the results in future iterations.
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