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1 Introduction

The industrial partner AXXOM provided a value chain optimization problem which represents a
typical planning and scheduling task as it occurs in the lacquer producing industries. Throughout
the duration of AMETIST, this case study served as a case study to (i) develop and compare
different modeling formalisms for scheduling problems, (ii) to evaluate the solution performance
of the various approaches to scheduling problems investigated within AMETIST, (iii) determine
which type of constraints are difficult or relatively easy to handle, and (iv) to further develop
the methods based on the bottlenecks found in the previous steps. This report first contains
the problem description including different versions of the case study, and then summarizes the
modeling formalisms, solution approaches, and results for six different tools applied to the problem.

2 Problem Statement

2.1 Original Formulation

The benchmark is derived from an existing pipeless batch plant in which three different lacquers
are produced according to the following scheme [10]: The materials required to obtain a specific
lacquer are first prepared in a pre-dispersion and a dispersion unit, and are subsequently filled into
mobile mixing vessels. After completing the filling procedure through a set of dose spinners, the
mixing is carried out for a product-dependent duration. A quality check determines if the product
meets given quality requirements. If so, the mixing vessels are emptied into filling stations and the
product is delivered to the customers – if not the quality is improved by returning the lacquers
to the dosing operation. The plant comprises 8 production resources and 6 mobile vessels, where
some resources and one vessel are only used for one type of recipe while the others can be assigned
freely. The operations cannot be interrupted (non-preemptive scheduling) and the material remains
in the mixing vessels during some of the steps, as the quality check in the laboratory, or possible
additional mixing. This leads to a situation where the operation times of the vessels are variable
because they result from the scheduling of the operations for this batch. For some operations,
more than one piece of equipment can be used. Each production order has a release date (earliest
starting time) and a due date (deadline). The main interest is in meeting the deadlines.

The problem of assigning the jobs (consisting of the aforementioned sequence of operations to
obtain a lacquer) to the 14 resources belongs to the class of job shop problems, with the additional
complication that mixing vessels are required as a second resource to perform the operations on
some machines. Another property of the problem, which is not standard in job-shop problems,
but often found in scheduling problems of the chemical industries, is the presence of constraints
on the storage times. These constraints are expressed as bounds on the differences between the
starting and the ending times of two operations of a job. Three types of such constraints occur:
start-start, end-start, and end-end constraints. The time horizon of the entire problem defined
by the earliest release date and the latest deadline of all jobs comprises approximately 7 weeks,
and the processing times on the machines range from few hours up to three days for laboratory
testing. The objective function of the scheduling problem combines costs for the delayed finishing
of jobs, operational costs per amount of product, and storage costs (i.e. early termination of jobs
is penalized). When minimizing this cost function, it has to be considered that the three different
lacquers incur different production cost.

2.2 Extended Version

In an extended version of the case study (set up during the second year of the project), a set of new
problem instances has been defined, which either involve new constraints or additional production
orders. The first extension introduces two new types of constraints: sequence-dependent changeover

2



procedures and the interruption of operations during weekends, holidays and at nights.

Changeover procedures are defined to prepare the filling stations for new operations, i.e. to change
the configuration of the resource. Such procedures often represent cleaning of the machines. The
resource is allocated in an exclusive fashion for 5 to 20 hours and the desired operation is started
immediately afterwards. Changeover procedures must be invoked when the filling station has to
process a different type of lacquer, i.e. when it has to enter a new configuration. The possible
configurations correspond to the three basic recipes for lacquers. The effect on the schedule is
two-fold: the start of the operation is delayed by the changeover and it causes costs.

Since some machines are operated in a 2-shift mode on working days only, appropriate modeling of
interruptions during night shifts and weekends is required. Interruptions mean that the operations
have to be stopped at the beginning of the given interruption period, and to be resumed when
the next working day starts. During the period, the resource remains allocated and the current
operation cannot be preempted by other operations. Some operations may be interrupted for at
most 12 hours. Both extensions reflect the industry’s need for solutions to realistic and challenging
problems.

In the other problem instances, the number of production orders has been increased to 73, 219,
500 and 1000. As a new optimization criterion, the minimization of total costs of the schedule is
the goal. For this purpose, different costs have been assigned to the storage of the final products,
to the delay of finishing jobs, and to changeover procedures. These extended settings involve fixed
costs as well as cost rates to be integrated over the duration of operations or quantities of the
orders.

3 Modeling and Requirement Specification

It was observed in the initial phase of the project that the academic partners interpreted the
various constraints and cost contributions contained in the problem formulation not identically. It
was deemed necessary to produce a representation scheme that formulates the requirements in an
intuitive and unique manner. A systematic modeling scheme comprising the following steps was
developed [12, 13]:

(a) create a dictionary to explain the domain-specific vocabulary used by the industrial problem
providers,

(b) resolve semantic ambiguities in the specification of the production sequence and constraints,

(c) define adequate levels of abstraction with an explicit representation of the design decisions,

(d) supplement the so-called product flow diagrams (provided by AXXOM) with recipe-like rep-
resentations, and

(e) systematically transform the latter representations into timed automata.

With respect to step (d), the product flow diagrams provided by AXXOM, which represent the
production steps in a graphical arrow-node representation, were first enriched by the processing and
offset times for the operations and by the information on the resources on which an operation can
be carried out. (The latter data were originally provided in separate tables.) An example for such
an extended product flow diagram is shown in Fig. 1 – a drawback of these diagrams is, however,
that parallel and alternative operations cannot be distinguished in all cases, and that some timing
restrictions have different meanings in different situations. It has thus been proposed in [13] to
supplement the product flow diagrams by the recipe-based representation shown exemplarily in
Fig. 2. This representation illustrates in which sequence the different types of resources have to be
allocated for a specific lacquer, and which timing requirements are relevant.
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Figure 1: Example of a product flow diagram.

Based on these representations, the systematic transformation into Timed Automata is achieved
relatively easily by:

1. translating each production step from the recipe representation into an automaton fragment
(i.e. a sequence of states and transitions),

2. composing the fragments,

3. converting the timing constraints (e.g., the processing times) into corresponding guard and
invariant conditions, and

4. modeling the resources by variables.

A different modeling approach, common in the industrial scheduling community, is the state-
task-network (STN) formulation with subsequent solution as algebraic program by the use of
mixed-integer optimization techniques. A standard representation of STN is one with discrete
time representation where changes of the states of the model can only occur at equally spaced time
instants. As any possible event can occur at any of these instants (modeled by a binary variable),
these models quickly become very large if the number of events is large, i.e. the scheduling horizon
is large compared to the maximal resolution required to meet the constraints. For the given case
study, this ratio becomes rather large and hence such models are not suitable here.

The alternative approach for algebraic modeling followed in this project is the use of continuous
event points at which an event (e.g. the start or the end of an operation) can occur [14, 1].
The number of such events can be computed from the production orders and the recipes (plus
eventually a worst-case estimate for sequence dependent operations such as cleaning operations).
In the example considered here, there are typically not more than a few hundred events whereas a
discrete time STN formulation leads to several hundred thousand binary variables. On the other
hand, though, the relative positions of the events must be represented by binary variables in order
to express constraints of the type that two operations cannot be performed on the same machine
at the same time (but either operation A must finish before B starts or B must finish before A
starts). It turned out that a standard formulation of a continuous time MILP model also gives rise
to rather large models with thousands of binary variables for problems with more than 10 jobs.
Therefore the model is reduced by additional heuristics, which exclude alternatives that cannot
lead to an improvement of the schedule. The heuristics, which are described in more detail in the
next section, eliminate a considerable number of binary variables, such that the total number of
binary variables increases only linearly with the problem size.
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Figure 2: Recipe-based representation of the production sequence.

4 Tool Application and Solution

4.1 Mixed-Integer Linear Programming with Cplex

In order to solve the algebraic program sketched before, the following heuristics were employed
[19]: (i) pre-ordering by earliest due dates (EDD), (ii) non-overtaking of operations belonging to
jobs of the same type, and (iii) non-overtaking of operations whose start and finishing dates do
not overlap. These heuristics were applied in a two-step-procedure as follows: First, the heuristics
(i) and (iii) are applied by fixing binary precedence variables, and the problem is solved. In the
second step, the variables fixed before are relaxed, and the heuristics (ii) and (iii) are applied by
fixing the corresponding binary variables. This problem is then solved by using the result of step
one as initialization. This procedure was combined with a rolling-horizon solution procedure which
decomposes the problem into a series of smaller sub-problems. These are first solved separately,
and the solution of the complete problem is finally composed of the solutions of the sub-problems.

The optimization was performed with the commercial package GAMS/Cplex. Parameter studies
of various Cplex parameters led to the result that the option dpriind = 1 and default values for all
other parameters are the preferable option for the given problem. Table 1 shows results obtained
for the original formulation of the case study as described in Sec. 2.1, but with a varying number of
jobs using GAMS/Cplex, version 21.7. The optimality gap as termination criterion was set to zero,
meaning that the search is continued until the optimal solution is found. In all tests, an optimal
solution with zero accumulated tardiness was found. Further results are reported in [9, 19, 15]. In
the last year of AMETIST, the MILP model was extended by constraints for changeover procedures
(see Sec. 2.2). It involves additional real variables to determine direct predecessors of operations on
the filling stations. If a changeover procedure is necessary for a pair of two successive operations, the
duration of the second operation becomes extended by the duration of the changeover procedure.
The results in Tab. 2 show the computational effort required to solve the extended model for a
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Table 1: Optimization of the original problem formulation with a variable number of jobs. time
1 and time 2 refer to the two stages of the solution procedure. Times are in seconds.

number of jobs time 1 time 2

10 3.95 2.87
14 15.86 0.61
16 23.83 0.92
18 46.72 1.20
20 58.71 1.53
22 100.23 1.85
29 412.93 2.61

varying number of jobs. Two versions of GAMS/Cplex were used to document the impact of the
software version on the results. The optimization objective here was to minimize the aggregated
tardiness of all jobs. In all test the optimality gap was set to zero and optimal schedules with
zero accumulated tardiness were found. The experimental environment was a 2.4 GHz Pentium 4
machine with 1 GB of memory and the Linux operating system. The following conclusions can be
drawn from the experiments:

1. The version of the software has no considerable influence on the solution performance and,
thus, the results are comparable to those published in [19].

2. The fact that new variables and inequalities had to be defined for the modeling of changeover
procedures only causes a moderate increase of the computational effort.

Table 2: Results for a MILP model extended to changeover procedures. Solution times are given
for problem instances with varying numbers of jobs and two versions of GAMS/Cplex. The pairs
of numbers refer to the two stages of the solution procedure. Times are in seconds.

number of jobs GAMS 21.3 GAMS 21.7

10 0.90/2.85 3.95/2.87
20 232.48/5.64 245.55/5.78
25 779.10/7.56 321.38/7.76
29 848.60/5.88 830.26/6.42

4.2 ORION-PI

Axxom applied its own software for specifying and solving scheduling problems, ORION-PI. It
uses a particular modeling concept based on so-called quants, which represent the smallest logistic
units required to model the problem. ORION-PI performs a quant-based combinatorial optimiza-
tion algorithm that employs the principle of branch-and-bound. The exact solution algorithm is,
however, not public domain.

Axxom performed two series of tests, one for the original version, and one for the extended version
that takes additional constraints for the operating hours, maximum break times, and production
rates into account. The cost function is given as the sum of delay costs (delay time times input
costs times the quantity of the order) and storage costs (storage time times input costs times
quantity of the order). Different scenarios for 29, 500, and 1000 orders are considered, and for 29
orders, cases with and without requiring a delay-free solution are included.
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Figure 3: Gantt chart for the case: extended problem version, 29 orders, red (dark) operations are
delayed.

Table 3: Results for the original version of the case study. The column delay costs answers
the question whether a delay-free schedule could be found or not (this was the only optimization
criterion required for this comparison). For the first scenario, ’O’ refers to results generated with
ORION-PI, ’U’ to Uppaal, and ’G’ to GAMS/Cplex – if not marked the results are obtained with
ORION-PI. The tests with ORION-PI were carried out on a PC with 2.66 GHz processor and 1
GB RAM, and the last two on a PC with 3.06 GHz processor and 2 GB RAM.

Number of jobs storage costs delay costs total costs jobs in time calc. time

29 O: 2627.32 O: 0 O: 2627.32 29 11 sec
U: 2840.18 U: 0 U: 2840.18 29 0.2 sec
G: 2113.83 G: 0 G: 2113.83 29 413 sec

29 1459.62 146.08 1605.71 22 13 sec
500 10648.16 34102.61 44750.77 200 32 min
1000 21750.51 66645.25 88395.77 403 97 min

Table 3 shows results for the original version of the case study and for four different scenarios. For
the first scenario (29 orders, delay-free solution), results obtained with Uppaal and GAMS/Cplex
are included for comparison. Results for the extended version of the case study are shown in Tab. 4,
and Fig. 3 contains exemplarily the Gantt chart obtained with ORION-PI for the first scenario
listed in Tab. 4. The visualization shows the single quants assigned to the resources with the
following meaning: red - delayed, yellow - just in time, green - too early. The generated schedules
meet the given constraints, as e.g. the requirement that the resources can only be used within the
given operating hours.
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Table 4: Results for the extended version of the case study. The accumulated delays of the
schedules are shown in column delay costs. ’O’ / ’U’ refer to results obtained with ORION-PI, or
Uppaal respectively. All ORION-PI test were performed a PC with 3.06MHz processor and 2 GB
RAM.

Number of jobs storage costs delay costs total costs calc. time

29 O: 2662.68 O: 9070.04 O: 11732.73 11 sec
U: 5706.78 U: 64.02 U: 5770.80 -

29 409.46 17496.61 17906.07 13 sec
500 33363.29 335754.56 369117.86 65 min
1000 138085.68 301544.73 439630.42 145 min

4.3 Synthesis of Schedules with Uppaal

Using the procedure to obtain timed automaton models of the cases study, sketched in Sec. 3, the
tool Uppaal [6, 2] was used to derive feasible and optimal schedules[3, 4]. The scheduling problems
were composed of the following components:

1. A set of recipe templates representing individual types of lacquers; these templates were
instantiated with parameters (release and due dates, quantities, costs) to model concrete
production orders as job automata;

2. Additional automata to model resources which have their own clocks (for changeovers) as
well as for interruptions and synchronization purposes;

3. Extensions of the automata to model various heuristics and cost criteria;

4. A property of the composed TA to be satisfied (minimizing a given cost criterion).

The following set of heuristics was considered: no overtaking of jobs (jobs started earlier receive a
resource earlier), non-laziness (a required and available resource must not remain unused), greed-
iness (a job allocates a resource as soon as possible), reduction of active orders (i.e. the number
of jobs currently processed), increase of release dates (to reduce the possible storage costs). How
these different heuristics and the different types of costs are established in Uppaal (or Uppaal-Cora
for cost-optimal reachability) is described in detail in [5]. Overall, 33 Uppaal models were created
for a varying number of jobs (29, 73, 219), the availability of resources (always available, or use of
availability factors [as the fraction of time in which a resource can be used because operators are
available], or available at explicit working times), optimization criteria (with and without costs),
heuristics (non-laziness, greedy, non-overtaking, increment of release dates, limitation of active
jobs).

The groups of problem instances are numbered from 1 to 7, and the corresponding problem prop-
erties can be summarized as follows:

1. 29 orders, hard release and due dates, feasibility problem (i.e, deadlines must be satisfied, no
cost optimization);

2. 73 orders, hard release and due dates, feasibility problem;

3. n× 73 orders as in 2), hard release and due dates, n vertical concatenations of the job table
from 2) with proportional extensions of release and due dates, feasibility problem;

4. n × 73 orders as in 2), hard release and due dates, n horizontal concatenations of the job
table from 2) with the release and due dates, and the n replicates of all resources from case
2); feasibility problem;
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5. 29 orders, no hard deadlines, cost minimization of storage and delay costs for final products
and setup costs for filling lines;

6. 29 orders, no hard deadlines, working time constraints, cost minimization of storage and
delay costs for final products and setup costs for filling lines;

7. 29 orders, no hard deadlines, working time constraints, cost minimization of storage costs for
intermediate and final products, delay and setup costs for filling lines.

If the generation of delay-free schedules is the objective, the reachability algorithm of UPPAAL
searches for a reachable state representing that all jobs are completed before their due dates are
passed. The trace into such a state (produced by UPPAAL) represents directly the schedule. The
analysis is performed by choosing depth-first or random depth-first search, where the latter was
more successful. Table 5 shows results for the feasibility analysis as obtained with Uppaal 3.5.6 on
a 2.6 GHz Intel-P4-Xeon processor and 2.5 GB of memory running Linux kernel 2.6.8. The model
number refers to the problem instances listed above.

Initial experiments revealed scalability problems, partly caused by the large number of clocks
contained in the models. The heuristic limit of the number of active jobs also provides a limit on
the number of clocks needed (one per active job instead of one per job), and the non-overtaking
heuristics provides an easy way of uniquely assigning shared clocks to jobs, since the starting order
of jobs of a particular type is fixed. This change reduced the number of clocks to 3 ·A+ 3, where
A is the maximum number of active jobs. The results show that, even for the case of 29 jobs, the
use of the heuristics is essential. The non-overtaking heuristics does not make much difference for
a case without availability factors, whereas in the case with availability factors the performance
gets worse. For 73 jobs, however, non-overtaking decreases the computation time considerably.
Limiting the number of active jobs increases the speed by several orders of magnitude (partly due
to the possible reuse of clocks).
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5 29 g yes/yes/no 5 10 min. 10/10 11 · 106 13 · 106

6 29 - yes/no/yes 5 10 min. 10/10 2.1 · 106 2.7 · 106

7 29 - yes/no/yes 5 10 s. 3/10 80 · 106 81 · 106

Figure 4: Table of experiments for the versions including costs with performance factors (pf) for all
models, availability factors (av) in model 5, and explicit working hours (ex) in the models 6 and 7.
A random-best-depth-first search of 10 minutes was used for the experiments with models 5 and 6.
The experiments with model 7 (which used the same search order) had to be limited to 10 seconds
due to problems with running Uppaal Cora. The number of successful runs (termination rate),
the lowest cost of any run and the average cost of each run is shown.

In addition, experiments were performed for the extended version of the case study (Sec. 2.2) using
Uppaal-Cora, see Tab. 4. Although the constraints of explicit working hours (used in the models
6 and 7) makes the model much more complex, the results show that the schedules have much
smaller cost than the schedules for model 5. A possible explanation is that the availability factors
distribute the availability uniformly over time. In reality, however, a dose spinner is completely
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1 29 - - 78.0 - -

1 29 nl - 0.3 1.5 3.5

1 29 nl no - 0.3 2.5 3.6

1 29 g - 0.2 2.8 -

1 29 g no - 0.2 2.9 -

2 73 - - - - -

2 73 nl - - - -

2 73 nl no - 24.6 - -

2 73 nl no 3 0.4 - -

2 73 nl no 4 1.1 0.4 0.3

2 73 nl no 5 4.4 0.6 0.9

2 73 g - 15.0 - -

2 73 g no - 9.2 43.3 30.5

2 73 g no 3 0.3 165.1 -

2 73 g no 4 0.4 0.3 0.3

2 73 g no 5 2.2 0.4 6.8

3 146 g no 4 1.3 0.9 0.8

3 219 g no 4 3.5 2.1 1.9

3 292 g no 4 7.7 4.4 4.0

3 365 g no 4 13.3 7.5 6.7

3 438 g no 4 20.0 11.2 10.0

3 511 g no 4 28.2 15.8 14.0

3 584 g no 4 37.7 21.2 18.6

3 876 g no 4 89.7 49.7 43.8

3 1168 g no 4 166.4 92.1 80.7

3 1460 g no 4 270.9 149.4 131.0

3 1752 g no 4 401.3 222.3 194.0

3 2044 g no 4 565.4 311.6 271.9

4 146 g no 5 9.7 - -

4 146 g no 6 167.8 - -

4 146 g no 7 - 21.0 -

4 146 g no 8 - 18.2 12.6

4 219 g no 8 - - -

4 219 g no 9 - - 347.9

4 219 g no 10 - - -

4 219 g no 11 - - -

4 219 g no 12 - - -

Table 5: Experiments for the generation of delay-free schedules. Abbreviations for the heuristics
are: em g - greedy, nl - not lazy, and no - no overtaking. Each experiment was repeated with a
model without working hours (no av, no pf), a model with availability factors and no performance
factor (av, no pf) and a model with both availability factors and performance factors (av & pf). For
each experiment the run time in seconds is provided. All measurements were done using depth-
first search. A run was terminated after 10 minutes or when memory consumption reached 2GB
(indicated by a ’-’).
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available during the weekdays and totally unavailable in the weekends. Therefore, the availability
factors give in some cases a large over-approximation of the processing times, with the result that
scheduling becomes much harder. The meaning of the costs is as follows: in model 6, a schedule
with cost of approximately 2 million (the best schedule of the 10 runs) is a schedule in which 2
orders are a bit late (1 day and 45 minutes, respectively), and the others are much too early (since
intermediate products do not incur storage costs). In model 7, this effect is countered by storage
costs for intermediate products, what makes the schedules more expensive. The investigation
of these effects is still ongoing work. It should be noted that the non-laziness heuristics is not
applicable to the extended case, since storage costs make it advantageous to be lazy. Also the non-
overtaking heuristics cannot be adapted, since it can be advantageous for a job with low storage
costs to overtake a job with higher storage costs. The greediness heuristics cannot be used either
in the models 6 and 7, due a limitation in Uppaal. Current work includes to adapt all heuristics
to the extended version.

The results show that feasible schedules can be derived with Uppaal such that the case with 29
orders is solved within 1 second, and the extension to 73 orders does not significantly increase the
computation times (if suitable heuristics are used). To further scale up the model size, a vertical
multiplication of two models with 73 orders was considered, and solutions could be obtained for
up to 2044 orders. For horizontal composition of the case with 73 orders (multiplying also the
resources) was successful up to 146 orders. To deal with the full set of constraints of the original
problem (incurring setup-costs for filling stations, storage costs, and delay costs) the problem was
transformed into a cost-optimization problem, and the latter was solved by Uppaal-Cora. A further
extension was required to deal with the constraints for working-hours, which increased the size and
complexity of the model significantly. But also for this case, feasible schedules could be derived
with Uppaal-Cora.

4.4 Stochastic Analysis with Moebius

For the feasible schedules obtained with Uppaal, our objective was to investigate the robustness
with respect to breakdowns of the resources, and to rank alternative schedules accordingly. The
problem formulation provided by Axxom contains performance factors (formulating the fraction
of time in which a resource is not operational) and availability factors (as the fraction of time at
which a resource can be used because operators are available). Axxom proposed to extend the
durations of operations by considering these factors. In order to check whether this modification
is advantageous and to accomplish the schedule assessment, the following approach was taken [7]:
The scheduling task was modeled in the language MoDeST, which combines modeling features from
stochastic process algebra and from timed and probabilistic automata with light-weight notations
such as exception handling. It is supported by the Motor tool, which facilitates the execution
and evaluation of MoDeST specifications by means of the discrete event simulation engine of the
Moebius tool. The performance and availability were modeled in detail by considering the mean
time between failures (MTBF), the mean time to repair (MTTR), and a pace as the frequency of
failure occurrence.

The performance analysis with Moebius included 80 experiments overall, where 20 different feasible
schedules were investigated for two different paces and two different deadline policies (1: give up
a job once it is sure it misses its deadline, 2: process all jobs to the end). One half of the
schedules included the modeling of availability and performance, while the other half did not.
Each experiment was executed 20,000 times and took around 4 to 5 hours. Figure 5 summarizes
the results from this investigation (left part: availability and performance not considered; right
part: both factors are considered). It can be concluded that: (a) a higher pace is advantageous
to successfully complete a job in time, (b) the success rate of the investigated schedules does not
differ significantly, and (c) it is not advantageous to simply extend the duration of operations by
the availability and performance factors since jobs are started later as necessary if an equipment
malfunction does not occur. Hence, the availability and performance factors should be used only
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for sequencing and the prediction of delivery dates but not for the timing of operations.

The investigation does furthermore allow to quantify the success rate for each individual job. The
obtained rates confirm the expectation that jobs which are scheduled to start late finish less likely
on time and that two jobs which are roughly started at the same time have a lower probability to
be finished timely.

Figure 5: Assessment of schedules.

4.5 Generation of Schedules by IF

Schedules for the original formulation of the case study were also derived with the tool IF [8].
Using the restrictions of fixed processing times on resources and exactly two quality checks per
job, a timed automaton model was built such that (i) the production sequence of each lacquer
was modeled by an acyclic timed automaton, and (ii) the availability of resources was represented
by shared variables. For the composition of all resulting automata, the scheduling task means to
find a minimum cost path leading to a (global) final state in which all lacquers are finished. Since
brute-force exploration of the state-space obtained for the problem with 29 jobs was impossible,
three heuristics were employed: (a) only non-lazy runs are explored, (b) overtaking of jobs is
forbidden, and (c) minimal separation times between the starting times of lacquers of the same
type are chosen.

Modeling these heuristics in the IF language and solving the original version of the problem with
the associated IF tools (in particular the module for computing paths with minimal costs), the
following results were obtained: a feasible schedule without delay is obtained in 15 seconds, and
the schedule can be extracted from the corresponding execution path of the model (with a depth
of 750) almost instantaneously by random execution. The schedule is shown as Gantt chart in
Fig. 6.

4.6 The Solution by TAopt

TAopt combines principles known from mixed-integer programming with reachability analysis of
timed automata [17, 16], in order to establish efficient pruning criteria for the graph search. The
main idea is to use linear programming to solve tailored relaxed subproblems in order to compute
lower cost bounds for pruning. The lower cost bounds are also used as a heuristics to steer
the search. The embedded linear programs are updated iteratively and then solved by Cplex to
compute the lower bound of the cost-to-go for the current node of the reachability tree.

In order to model the case study in TAopt, the scheduling problems was first formulated as a
resource task network (RTN) extended by additional information. RTN are a common and illus-

12



Figure 6: Schedule obtained with the tool IF.

trative description method for recipes in the operations research community and are widely used
to describe scheduling problems. A problem specification in TAopt consists of:

1. A description of the plant, including all resources with capacity constraints, resource config-
urations and transitions between configurations (which represent changeover procedures);

2. Recipes formulated as RTN consisting of tasks, products, resource and configuration refer-
ences, and arcs between the individual elements; additional timing and sequence constraints
can be expressed using places labeled by a marking (similar to time Petri nets);

3. Production orders, each of which references a recipe and produces a new job as an instance
of the recipe.

The instances can be modified with respect to release dates, due dates, and production quantities
according to requirements of the individual production orders. In addition, tasks and places of the
RTN can be decorated by costs and cost rates, respectively. An example, of an RTN for one type
of lacquer is shown in Fig. 7.

The meaning of the individual elements of this RTN is as follows: Tasks are represented by rectan-
gles and decorated with durations. Places represent timing and sequencing constraints of tasks and
are depicted by thin circles. Initial markings are shown as black bullets. The attached intervals
contain the minimal and maximal time in which a marking may be in the place. The following
constant values are used in the recipe to instantiate a job: the release date rd, the due date dd
of the job, and the time horizon H, i.e. an upper bound of the makespan. Thick circles represent
resources which are linked to tasks by dashed undirected lines. Some of the links are additionally
decorated with MET, which is the name of the configuration required by the corresponding task.
Tasks without resources are dummy tasks used for synchronization purposes only. The lab resource
and the corresponding tasks have been removed here.

Given such an extended RTN as input, TAopt automatically generates a timed automaton (TA)
model and a corresponding MILP model (with partly relaxed integrality constraints). The TA
model is extended by costs on transitions and cost rates on locations according to costs and cost
rates obtained from the RTN. Both models are then used in TAopt to perform a cost-optimal
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Figure 7: A RTN of the recipe for metallic lacquers.

reachability analysis (of the TA model), and to compute lower bounds of the cost-to-go using the
LP model.

Table 6 shows results obtained with TAopt for the original version of the case study with a reduced
number of jobs. We considered the minimization of the makespan for a varying number of jobs,
where the first five problems do not include hard deadlines for the jobs, while the last two do. The
search was terminated when a specified number of nodes (node limit) was explored. The table lists
the number of solutions found, the best makespan among all solutions required to process all jobs,
and the computation time (in seconds) to obtain the best result. In all tests no heuristics were
used, thus these results reflect the performance of a pure depth-first search with cost minimization.
Both criteria, maximal depth and minimal costs, were used as decision rule for removing nodes
from the waiting list. For the last instance, no feasible solution could be found before the search
was terminated after exploring 1 · 106 nodes.

As TAopt is still a prototype tool at this stage, embedded linear programs can so far be used only
for job-shop problems. Another limitation comes from the fact that the traces potentially explored
by TAopt are limited to immediate traces in which one dominating vector of clock valuations is
identified in each zone to be stored in the internal data structures. Such representation allows for
efficient representation and computation of symbolic states, but limits the possible optimization
criteria. The chosen representation is sufficient to compute optimal schedules for simple opti-
mization criteria as makespan, tardiness costs and storage costs with hard deadlines. Other more
complicated cost criteria can be defined as well, but in some cases no optimal schedules can be
guaranteed, e.g. for the combination of storage and tardiness costs. The solution of larger problem
instances of the Axxom case study with embedded LPs is a subject of current work.

5 Assessment of the Achievements and Open Issues

Overall, different modeling techniques to suitably represent the value chain challenge problem
were developed and tested within AMETIST, and the considered set of tools has been found to be
able (after introduction of suitable heuristics in some cases) to solve different problem instances
efficiently.

With respect to the approaches based on timed automata and (extended) model-checking tech-
niques (Uppaal, IF), the experiences can be summarized as follows: A considerable effort had to
be put into producing an appropriate TA representation of the problem specification provided by
AXXOM. One part of this effort was to clarify and exactly interpret the constraints and relevant
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Table 6: Optimization of the original problem formulation with TAopt for a varying number of
jobs using the makespan as the optimization criterion.

No. jobs deadlines node limit No. of solutions best makespan calc. time (sec)

10 no 2 · 105 9 30920 54.9
12 no 2 · 105 3 53216 75.9
14 no 1 · 106 2 55371 525.5
16 no 1 · 106 5 53792 661.9
18 no 1 · 106 5 53692 839.5
10 yes 2 · 105 6 30920 65.9
12 yes 1 · 106 0 - -

costs. In addition, specific schemes had to be developed to include the various constraints into the
model. This shows, on the one hand, that the application of model checking techniques to this
kind of production scheduling problems is not yet a push-button technology, since the models have
to be constructed with care, and suitable heuristics have to be identified. On the other hand, one
can realistically assume that many production scheduling problems have similar structures, such
that the modeling patterns developed in AMETIST can be reused for similar scheduling problems.
Further investigations have to identify a core collection of such patterns. Once the TA model is
obtained, the application of model checking techniques for production scheduling is promising, as
feasible schedules could be obtained in short computation times for not too large problems.

In direct comparison to the TA-based approaches, the effort for solving algebraic programs with the
MILP approach was found to be higher in many instances. Even when heuristics were implemented,
the solution procedure (which includes the time-consuming startup of GAMS/Cplex) often takes
more time than the entire optimization performed by Uppaal. On the other hand, the solution
quality is expected to be better because a true optimization problem is solved. Creating efficient
MILP models is usually a laborious task and requires not only experience but also the investigation
of suitable solver parameters to accelerate the solver performance. The advantage of the MILP
approach is the possibility to assess the quality of the solution by evaluating lower bounds of the
costs. Another advantage arises from the fact that the optimization criterion can be an arbitrary
linear function, and its choice hardly affects the rest of the model. Thus, it seems easier to combine
different models, heuristics and objective functions. However, the MILP approach is limited to
medium-sized problems.

First test results of the scheduling algorithm implemented in TAopt[18] have shown that embed-
ding the solution of LPs into the reachability algorithm for timed automata can efficiently prune
the reachability tree, and thus reduces the memory consumption considerably. This advantage
dominates the effort to solve embedded LPs when large models are optimized. In comparison to
GAMS/Cplex it was shown in [18] that feasible schedules for benchmark job-shop problems could
be computed quickly and the quality was better than for GAMS/Cplex, when appropriate state
space reduction methods and heuristics are activated. However, the applicability of the imple-
mentation of TAopt is currently limited to models that can be expressed as RTNs with timing
constraints, i.e. only a simplified version of the case study could be solved.

The approach of the industrial partner Axxom is competitive to the other approaches with respect
to the solution effort. Similar to the MILP approach, it is based on a branching algorithm, extended
by different heuristics to efficiently prune the state space and to provide feasible solutions quickly.
Its advantage is the flexibility of using different (also non-linear) cost functions and constraints.
The modeling is made comfortable by an appropriate GUI.

Based upon the results reported above, the performance and the range of application of the tools
that were applied to the benchmark problem can be summarized as follows:
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• For problem instances of moderate size, with possibly complex (but linear) cost functions and
simple timing constraints (only conditions for the relative time-shift between operations), the
MILP-approach is able to compute better solutions than a TA-based approach or ORION-PI
in reasonable computing times. However, the modeling effort is comparatively large.

• For scheduling problems of moderate size but with complex timing constraints (e.g. limited
working hours) and simple cost functions, the TA-based approach, e.g. Cora-Uppaal, is able
to provide better solutions than ORION-PI if suitable reductions and heuristics are used.
The modeling by MILPs in these cases gives rise to very large models in a continuous as well
as a discrete time formulation that cannot be solved without further simplification.

• For large-scale problems with complex timing constraints (e.g. the consideration of night
shifts) and cost minimization, ORION-PI at present is the only tool that can provide solutions
with reasonable computational effort.

• Timed Automata are not yet a push-button technology to be applied without problem specific
modeling and solution strategies. But the generation of libraries of templates for typical
configurations seems promising and appears as a path towards to more widespread and easier
application for non-TA-specialist users.

As for the stochastic assessment of schedules (with Moebius/Modest/Motor), the use of the per-
formance and availability factors led to the question of proper interpretation. Extending the
processing times by these factors can be used to analyze how many jobs can be handled on a
longer time horizon. However, the stochastic analysis has shown that using performance and avail-
ability factors to obtain concrete schedules, increases the probability to miss deadlines if not only
the sequencing but also the timing of such schedules is implemented. It is unclear at this stage
what modeling assumptions are best suitable for the derivation of concrete short-term schedules,
where storage costs have to be minimized, and where delay costs should to be avoided. A suitable
idea may be to use a form of schedule refinement, taking rough long-term schedules as a basis for
obtaining precise schedules for a shorter term – such a refinement approach was successfully used
in the Cybernetix case study [11]. Another idea to be investigated in the future is that of searching
for schedules in reverse time, starting from the due dates of orders – valid schedules obtained this
way avoid storage and delay costs by construction.
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