
Model Classification

Oded Maler

VERIMAG

May 20, 2006

AMETIST DELIVERABLE 1.1

Project acronym: AMETIST
Project full title: Advanced Methods for Timed Systems
Project no.: IST-2001-35304
Project Co-ordinator: Frits Vaandrager
Project Start Date: 1 April 02
Duration: 36 months
Project home page:http://ametist.cs.utwente.nl/



1 INTRODUCTION

1 Introduction

This deliverable is intended to classify scheduling problems in a way that will facilitate the task of
identifying the, hopefully non empty, niche for timed automata technology in the scheduling land-
scape. Such a classification is not an easy task, especially forreal scheduling problems, because, to
rephrase Tolstoy, each scheduling problem is unhappy in its own way, that is, problems do not classify
simply according to a small number of orthogonal decision variables. Moreover, since scheduling
problems appear almost everywhere, it is not realistic to expect an exhaustive classification encom-
passing the theory and practice of so many domains of human activity, giventhe meager allocation of
person months to this task. Nevertheless, in what follows we propose some useful features that parti-
tion the space of scheduling problems. These properties are of different characters, some refer to the
meta-level (academic versus real), some to the application domain (manufacturing versus computing)
and some refer to specific technical features of mathematical models (certainty versus uncertainty).
As mentioned above, these variables are not independent and, in fact, are often correlated. Naturally,
the classification will be of higher resolution when it comes to areas coveredby the AMETIST project,
and which are more relevant to timed automata. The presentation will be organized in the following
format: we will discuss each classification feature and describe what arethe implications of of being
in either side of the spectrum that it spans. In the case that the value of the variable in question has
some strong implications with respect to TA technology, we will comment on that, aswell as on the
dependency between variables (for example: in application domain X, scheduling problems tend to
have technical feature Y). At the final section we will try to summarize.

Before embarking on this journey, let us clarify what do we mean by amodel. To start with, we
have some “reality” which consists of physical entities such as production lines in a factory, orders,
deadlines, workers and machines. A model of this part of reality is a set offormal objects (words,
mathematical symbols, diagrams, computer programs) whose formal inter relationships somehow
reflect the important aspects of the concrete situation. Durations, precedence and resource constraints
are examples of important aspects, while the maiden name of the mother of the shift managers is not.
A good model provides for some kind of “virtual” analysis, using pencil and paper or computers,
whose formal outcome corresponds to the concrete situation. For instance, if the formal analysis
results in a solution in the form of a Gantt chart satisfying certain constraints, we would like this
chart to be realizable in the real world with a proper translation of the “events” in the chart to actual
initiation and termination of production steps at specific points in (real) time.

In the above discussion we talked aboutinstancesof situations (say, planning of operations for factory
X in week Y) and their corresponding instances of models. More generallywe would like to speak
of classesof models, or modelschemes(in the data-base sense). In the concrete world these classes
correspond to similar situations, for example planning for the same factory atdifferent weeks. Each
instance will be different but will typically employ the same type of machines, products and con-
straints. A more general class of models may speak of situations which are common to all factories in
a given sector. In the abstract world such model classes correspondto types of problems in the math-
ematical sense, for example, systems of constraints restricted to some form (e.g. linear), or classes of
timed automata having certain features. It is mostly at this level of model classesthat this deliverable
is situated.

May 31, 2006 AMETIST deliverable 1.1 2



2 REAL VS. ACADEMIC MODELS

2 Real vs. Academic Models

One major distinction is between models coming from the theoretical/academic world and models
intended to represent actual problems coming from practice. The purpose and use of these two types
of models do not always coincide and their common use of the wordmodelis sometimes a source for
misunderstanding. These purposes are summarized below:

• Theoretical models: the goal is to capture some of the essential and generic features of a class
of concrete situations, in order to be able to say something rather general about such situations.
The more mathematically inclined and established is the community involved, the more willthe
models tend to be stylized and ignore non generic details. The outcome of theoretical models
can be theorems, for example on the properties of optimal schedules or uniqueness of solutions,
classification in terms of computational complexity, or efficient solution algorithms. Such re-
sults, especially when they are analytic, are very hard to obtain in the presence of non generic
details. While this approach is very productive for the advancement of science1 there is a risk
that a theoretician will focus on those details that allow him or her to prove theorems and will
tend to neglect and classify as non generic those that are not of much usefor the paper industry.
A typical example is the concentration of the operation research (OR) community on determin-
istic offline problems, partly because these models are amenable to formulation as decision or
optimization problems whose complexity can be established. A good example of a useful ab-
straction of this type can be found in program verification where abstractcomputational models
of transition systems were used, rather than models based on specific programming languages.2

• Practical models: these models should capture all relevant details for the actual operation of a
concrete plant, here and now. Facts like national holidays, trade unions,relative importance of
customers and many other details that may be of no interest to the theoretician, can be critical
for correct or optimal operations. Sometimes these details, like many others in daily life, go
without saying and escape formalization. However, if we like to mechanize thescheduling
process as much as possible, we need to formalize many of them.3 The formalization of less
and less structured information in a form amenable to automatic deduction and computation is
a known problem in AI, knowledge engineering and natural-language processing.

Perhaps the differences between these types of models are best manifested in while comparing the
classicaljob-shopproblem [JM99] and the Lacquer Production case study provided by Axxom. The
job-shop problem is a crystallized formulation of one of the fundamental features of scheduling,
namely the interaction betweenprecedenceand resourceconstraints. The beauty of the problem
lies in its simplicity, which is sufficient for understanding why it is harder than (convex) linear pro-
gramming due to the disjunctive form of the resource constrains, to prove itsNP-hardness, to illustrate
simple heuristic solutions such as greedy execution, give bounds on the distance between optimal and
heuristic solutions, etc. On the other hand, the problem is very simplified and does not cover many re-
alistic features. For example it assumes that every step consumes exactly one resource/machine, a fact
which already does not allow the treatment of containers. It assumes that each step can be performed
only on one type of machine. It uses the “maximal tardiness” (makespan) asan optimization criterion

1Newton’s toy problem of point masses involved a lot of simplifications compared to real planets.
2Of course, the connection with the concrete reality of software productionshould later be re-established in order to

make tools based on such abstractions usable in practice. However the insights gained while studying the abstract models
were less likely to be obtained if one had to deal with real programs.

3It would be hard to prove nice theorems about such models, though.

May 31, 2006 AMETIST deliverable 1.1 3



3 APPLICATION DOMAINS

while it is evident that in real life the termination times ofall jobs do matter, for better (delivery) or
worse (inventory) and that some deadline constraints are harder than others. Each of these and other
restrictions can be relaxed, rendering the mathematical model more baroqueand ugly.

The Axxom case-study, represents the opposite side of the spectrum. Ithas containers allocated to
each job during its lifetime, it has constraints on the waiting time between steps, it has job-dependent
conditional activities such as rinsing, it has deadlines and a non-trivial cost function and has to take
into account the non-regular structure of the Julian calendar and its holidays.4 So a priori, such a
practical problem seems to be much harder than the abstract job-shop problem.5 On the other hand,
this problem is “solved” every day (or week, or month) by humans and toolsof various sorts, so where
is the catch? This can be explained by the fact that if one does not insist onglobal optimality (which is
never really the issue) and applies some common-sense ideas such as non-laziness6 or non overtaking
(which is very plausible hypothesis for pipeline-like jobs) to reduce the solution space, one can easily
find reasonable solutions.

The moral of this section is that the practical solution of real-world problems does not necessarily
involve the use of the theoretical and algorithmic state-of-the-art in the domain. The best available
abstract scheduling algorithm is not necessary nor always sufficientto deliver real viable solutions.
However, we strongly believe that if one wants to scale up and attack problems whose solution admits
a serious computational bottleneck, focusing on the essential features that cause the combinatorial
explosion is a better strategy in the long run than attacking immediately real detailedproblems.

Where do timed automata stand here? As has been demonstrated in the project they can model in
an elegant way clean theoretical problems such as the job-shop and task-graph problems. To go
beyond that, they pay the performance price that any other methodology that allows richer constraint
would pay. Adding relative deadlines and more complex temporal constraintsone might lose the
optimality results specific to the job-shop problem such as non-laziness. Adding more sophisticated
cost functions, as has been demonstrated in the work onlinearly-priced timed automata[BFK+01],
we are still in the domain where the strong theoretical results for timed automata hold, although the
performance may deteriorate. Features needed to capture more complex situations can be incorporated
into timed automata, losing perhaps the decidability feature which, anyway, does not seem to be
pertinent for synthesis and scheduling problems. So, along the theory to practice axis, timed automata
do not seem to be inferior nor superior to alternative formulations of the scheduling problem. As will
be indicated in the sequel, a major disadvantage of timed automata is manifested in problems where
non-temporal resource constraints are dominant, while their potential advantage lies in the effective
modeling of uncertainty and more intuitive representation of the system dynamics.

3 Application Domains

Due to the universality of the scheduling and resource allocation problem, itappears everywhere and
no attempt is made to be exhaustive. We will talk of three large classes of application domains which,
needless to say, are far from being internally homogeneous.

4Even the trivial but tedious translation of time between decimal numbers to hours/minutes format is an issue for appli-
cability and usability.

5Some explanation can be given in terms of the difference between the more syntactic notion ofdescriptive complexity
and the inherentinternal complexityof problems which need not coincide.

6For job-shop problem this is not a heuristic but an exact optimization.

May 31, 2006 AMETIST deliverable 1.1 4



3.1 Manufacturing 3 APPLICATION DOMAINS

3.1 Manufacturing

We use this generic term to denote “traditional” industries that transform physical entities (raw mate-
rials) into other entities (products) using well-known processes (recipes). The whole field known as
operations researchoriginated from the need to organize the production process in an economically
competitive manner. Many of these decisions are design decisions for constructing the plant. Other
decisions are related to machine renovation, marketing and inventory policieswhich are not directly
related to scheduling. Scheduling problem manifest themselves typically in the following form: given
the factory as is, with its production capabilities and constraints, with inputs of orders and material,
find an optimal or reasonable way to orchestrate the production so as to produce the output in a timely
and economic manner, while meeting the deadlines associated with the orders.

The scheduling problem is meaningful when there arebounded resourcesthat can be used for the
production ofseveralproducts or product instances. Although these resources are re-usable, they
can be used for one purpose at a time and conflicts occur when we have todecide at which order to
allocate the resource to competing tasks. Different solutions correspondto different ways of resolving
these conflicts, and the cases which are meaningful from an economic point of view occur when these
solutions differ significantly among themselves in quality (cost, meeting deadlines). If this is not the
case, choosing an arbitrary schedule would do. In a more modern formulation, the scheduling problem
is referred to as thevalue chain management problem, where more holistic considerations including
transportation between different production sites (or subcontractors), inventory costs, or financing are
integrated into the decision process.

We mention briefly some features that seem to be common to problems coming from this domain and
their corresponding models:

1. In many (but not all) of manufacturing domains, the time scale of the operations is much larger
than that of computation. Typical production steps may take hours and daysand the process of
planning a weekly schedule can afford many hours of computation on powerful machines.7

2. The cost of individual decisions can be very significant, especially when one deals with large-
scale operations such as refineries and other chemical plants.

3. Most such operations involve humans and physical processes whose exact performance cannot
be predicted exactly. Moreover, the problem specification may change during execution due to
machine breakdown, order cancellation and more. Hence the schedules chosen should berobust
under a reasonable amount of disturbances, and cannot be based onsome rare and complex
opportunities that are possible only in a short temporal window. Moreover, it seems that the
best approach to these problems is not fully-automatic but more in the spirit ofan interactive
decision-support system where the user may force some decisions, andlet the computer do
some exhaustive computations only for some parts of the problem.

3.2 Transportation

In transportation problems, the work to be done is given in terms of quantities of goods and persons
to be transferred between geographic locations, using the transportationinfrastructure which includes
vehicles, routes and junctions. Train and airline schedules are fairly regular and periodic and are also

7Here too, one can find exceptions: when a machine in a production line breaks down, a quick solution should be found
without rescheduling the whole production. However, in this case we are talking about different granularity.

May 31, 2006 AMETIST deliverable 1.1 5



3.3 Computing and Communication 3 APPLICATION DOMAINS

subject to safety constraints. However, more often than not, there are unexpected delays that call for
rescheduling, which is not always lead to good results, as many of us mighthave experienced.

Tracks, junctions, air-corridors and landings are the shared resources for which decision should be
made. We do not elaborate further on this application domain because it was not studied extensively
within AMETIST .

3.3 Computing and Communication

In computing, the goods to be transformed and transported are pieces of information realized by
low-energy electronics. Shared resources are computation devices such as processors or lower-level
functional units which transform data from one form to another, communication channels that trans-
port these data between different production and consumption sites and shared peripherals such as
printers and other I/O devices. We make a quick review, roughly in chronological/historical order, of
some of the most common manifestations of scheduling problems in this application domain.

Time-Sharing Operating Systems In time sharing, a CPU serves a variety of users, some interac-
tive, working in front of a terminal, and some others issuing jobs that have torun in the back-
ground. The scheduler is part of the operating system and its role is to give the interactive users
the illusion that the CPU works for them (they are sufficiently slow not to noticethe difference),
and execute the other programs as well. In addition, slow resources suchas printers should also
be allocated as well.8 Since the pattern of demand of these computational resources is not
known in advance, there is no use, to plan for a specific optimal schedule. The problems was
resolved by assigningpriorities to tasks according to their importance, with obvious preference
to system tasks such as interrupt handlers.

Real-Time Systems The work in this domain is motivated by the realization of (parallel) control
loops by sequential computers. These are typicallyperiodic tasks, each of which has to be
performed in a given frequency, and each has a known bound on its duration on the given
execution platform. From the scheduler’s point of view, the frequency requirements can be
expressed in terms ofrelease timesand deadlines. Liu and Layland in their seminal paper
[LL73] studied this problem and showed some analytic bounds on schedulability of such a set
of computations on a given processor. Two basic scheduling policies arecommonly used. The
first is earliest-deadline first(EDF), which means always to execute the task whose deadline
is the closest (recall that a single machine is used here). The EDF strategyis both common
sense and optimal. The other strategy known asrate monotonic(RM), always gives priority to
enabled tasks with the highest frequency of execution. While this fixed priority policy is not
optimal, it is easy to implement by methods borrowed from time sharing. It should be noted
that both policies use preemption. The weakness of the model lies in the assumption that tasks
are considered as independent, that is, there are no precedence constraints.9 Other simplifying
assumption is that tasks do not occupy resources other than the CPU and that the overhead of
context switching due to preemption is negligible. Various extensions to these policies were
suggested in order to treat more realistic situations. One of those has even led to a famous and
costly bug in the Mars Rover.

8The allocation of more than one resource to a job gave rise to the first deadlocks. Proving the absence of deadlocks in
resource-allocation protocols became subsequently one of the first cases studied in program verification.

9Except, of course, precedence between subsequent instances of the same task.

May 31, 2006 AMETIST deliverable 1.1 6



3.3 Computing and Communication 3 APPLICATION DOMAINS

Scheduling Parallel Programs Parallelism in computing is a fashion that periodically becomes pop-
ular in certain quarters. The idea is to execute programs, even if written using a sequential
programming language, on a network of (typically identical) processors. Such programs can
be decomposed into blocks that constitute the basic tasks. Precedence constraints among those
tasks are deduced fromdata-flowanalysis of the program, where the execution of each block
should be preceded by the execution of those pieces of code that produce the data it uses as
input. This precedence graph can be seen as both a generalization of thejob shop problem
(a richer form of precedence) and a restriction of it (machines are identical, and the problem
is symmetric unless communication cost is taken into account). Specific classes of programs,
especially those used in scientific computing, such as matrix operations, admit particular paral-
lelization schemes. The whole topic is currently undergoing a renaissance due to the decision of
semi-conductor industry to move to the so-calledmulti-corearchitecture with several processors
on a chip.

Instruction Level Parallelism At a smaller scale, scheduling can be performed also at the level of
themicro architecture, where a processor has a number of functional units for performing arith-
metic and logical operations and it may try to parallelize some executions that aredata inde-
pendent. Moreover, in certain cases, the amount of parallelism in the hardware architecture
is sufficient for engaging inspeculativeexecutions, where precedence constraints are not fully
respected. That is, if a task has only few outcomes, it is possible to start executing in parallel
several instances of a successor task with each of the possible outcomes. When the first task
terminates and the outcome becomes known, those task instances that do not correspond to the
outcome are aborted. While, in principle, this problem is very similar to scheduling on parallel
machines, there is a quantitative difference in the time scale and in the computational resources
available when decisions are to be taken, and these differences may influence to choice of solu-
tion techniques.

Network Scheduling Communication channels at various levels of granularity constitute a particular
resource in the computational infrastructure with an ever increasing importance. Some exam-
ples of scheduling problems include the allocation of time slots in a field bus in distributed
control systems, the allocation of switches in routing networks or the allocationof frequencies
in wireless networks. Some of these problems have a “bulk” character, thenumber of individ-
ual “tasks” is very large and models where individual tasks are represented explicitly are of no
practical use. Instead, as in the case of scheduling policies for time-sharing operating systems,
statistical models based on queuing theory are more suitable.

Server Scheduling Another example of a class of massive resource allocation problems is encoun-
tered in the operation of large distributed data-base systems (via the web or another communi-
cation infrastructure) where a “farm” of servers processes different type of queries coming from
all over the world. Here, as in the routing problem mentioned in the previous subsection, the
modeling style is more close to queuing theory.

What are the major characteristics of scheduling problems in the computation domain, compared to
problems in manufacturing?

1. Time scale is a major difference with respect to most physical processes. Production steps in
computation will typically have a very short duration10 and one can apply traditional optimal
and nearly-optimal solution techniques only for very restricted decision horizons.

10Of course one may find exception, for example if we want to schedule ona cluster or over the Internet a heavy sci-

May 31, 2006 AMETIST deliverable 1.1 7



4 TIME SCALES AND COMPUTATIONAL RESOURCES

2. The economic significance of better schedules is of a somewhat different character. In many
cases better resource allocation policies may improve the tradeoff between the cost of the hard-
ware infrastructure and the quality of service. The problem is that, unlike physical production,
improving the throughput of a computational system by buying few more processors is not such
a big expense given the price decline in computer technology. Hence sucha reduction might be
significant only for companies whose servers answer queries on planetary scale such as banks
and search engines.

Another niche of the information market where optimal scheduling may be meaningful is em-
bedded computing. If a more efficient scheduling policy can reduce, even by a fraction, the
computational resources in a car, or in a cell phone, multiplying these savings by the number
of products sold may lead to economic significance. And indeed, optimization thecost of em-
bedded hardware, either by more efficient circuit synthesis or by more efficient scheduling is a
very hot topic, sometimes referred to ashardware-software Co-design.However, as we discuss
below, such embedded systems are also limited in the computational resources they can invest
in the additional task of solving the scheduling problem itself, if the latter is to be solved online.
Offline solutions may be more feasible but restricted to dedicated applications.

3. Finally, unlike real manufacturing, operations in the computation domain areoften performed in
a completely automated fashion. This makes them, in certain cases, much more time predictable
than operations that involves matter and humans11 and since the entity that executes the schedule
is also a computer, sophisticated and non-intuitive schedules which are hard to implement in a
human environment can be realized in this context.

Timed automata have been demonstrated to be capable of modeling phenomena in both manufacturing
and computation. In general they seem to share with constraint optimization methods the infeasibility
of solving large problem in real time, where one has to resort to simple solutions such as priority-based
scheduling that do not even attempt to approximate the optimum.

4 Time Scales and Computational Resources

One important characteristic feature of classes of scheduling problems is the relationship between the
following factors:

1. The length (in absolute time) of the decision/execution horizon12 for which a solution is sought;

2. The time scale of the process to be scheduled, that is, the duration of a typical execution step.
This factor determines the size of the scheduling problem: if the decision horizon and the
activity density are kept fixed, the shorter is the average duration, the more tasks have to be
scheduled in the same temporal window;

3. The computational complexity of finding optimal or satisfactory schedules for the class of prob-
lems in question. Note that problems that have the same number of tasks may differ radically
in complexity;

entific computation which would take years on a single computer, we may have time-scales that approach those of typical
manufacturing.

11Worst-case execution time (WCET) of modern processors with cache is anotable exception.
12This issue, in fact, is not really separable from the question of uncertaintyto be discusses next.

May 31, 2006 AMETIST deliverable 1.1 8



5 DETERMINISM VERSUS UNCERTAINTY

4. The available computing power, measured by the time it takes to perform a basic step in the
scheduling algorithm (exploring a path in the case of timed automaton representation, finding a
satisfying assignment in a constraint-based approach).

To illustrate the significance of these factors consider the following two concrete situations taken from
the above mentioned application domains.

Example 1: Suppose we have to plan theweeklyschedule of a factory. The decision horizon is in the
order of a week, say100 hours. Assuming that the average duration of execution steps is5 hours,
and the factory hasm machines, the scheduling problem involves about20m tasks.13 Assuming that
planning takes place in the weekend and that all orders for the next weekare known at that time, the
computing effort that can be dedicated to the problem is around50 hours multiplied by the power of
the available computers. This may be sufficient for finding reasonable (if not optimal) results for such
a problem. Typically, computers are cheap compared to other machines and resources, so if optimal
decisions have important economic impact, additional resources can be allocated to the computation
to improve the quality of the solution (although NP remains NP).

Example 2: Suppose we want to schedule a set of instructions on the parallel micro architecture of
a processor. If we deal with straight line programs without branching, we know in advance the set
of instructions to be executed. Hence we can perform the optimization atcompile time, which gives
us sufficient computation time.14 The situation is radically different when we deal with branching
programs where the stream of instructions to execute is not known in advance (like orders to a factory
for long time horizons). In this case the scheduler has to workonline, taking as input the list of
instructions accumulated in its execution stack at a given moment. If we deal withn instructions,
we have to solve a scheduling problem forn tasks within a time bound which is of the same order
of magnitude as the execution ofn instructions, something which is totally infeasible unless we use
an auxiliary computer which is orders of magnitude faster than the processor in question. But in this
context, the optimization should be performed using the resources of thevery same processorwhose
operation we want to optimize!

One can see that in the scheduling of fast processes, the importance of the timelinessaspect of the
solution to the scheduling problem dominates thequality of the solution.15 In such situations, simple
and fast solutions seem to be the only viable alternative. As stated earlier, an interesting niche would
be embedded systems (rather than general-purpose processors) whorun a fixed (branching) program,
which might change infrequently, only when the system is upgraded. For such programs, investment
in doing the optimization in compile time may pay off.

Timed automata are rather neutral with respect to this issue. Computing shortest paths in timed au-
tomata within a very short time seems to be as infeasible as doing it using other techniques based on
constraints. Quick heuristic solutions can be implemented using the timed automaton representation,
although the advantages of using this representation still needs to be demonstrated.

5 Determinism versus Uncertainty

An issue that kept on surfacing in the previous discussion, namelydeterminismversusuncertainty,
is very important and is not so much well-studied in the traditional scheduling literature, mostly due

13These are gross estimations, of course, the task durations nay vary, machines may be different, etc.
14Provided, of course, that the object code is refined to contain low-leveldirectives to the micro architecture.
15Similar issues have been studied under the title ofanytime computation.

May 31, 2006 AMETIST deliverable 1.1 9



5 DETERMINISM VERSUS UNCERTAINTY

to the lack of conceptual tools for expressing such phenomena.16 In traditional optimization one has
to choose between alternatives, and each choice leads to aunique outcomewhich is obtained by sub-
stituting the choices in the constraints and cost function. This is exactly the situation in the classical
job-shop problem, where the jobs to be executed are fixed as well as their duration on the given ma-
chines. In this setting, a sequence of scheduling decisionscompletely determinesthe actual execution
and its cost. In reality, scheduling problems are corrupted with a large amount of uncertainty, a fact
that led some authors to comment:“The static problem definition is so far removed from job-shop
reality that perhaps a different name for the research should be considered” [MSB98]. As we feel
that the treatment of uncertainty could be a major advantage of timed automata, wewill elaborate on
this point.

One can classify the uncertainty concerning the operations of a production plant into two major types:

1. Internal uncertainty: All unexpected events that may change the production capacity and per-
formance of the plant, including machine breakdown or slowdown, strikes,wrong estimations
of the time to perform a step, or critical workers that need to go to the dentist;

2. External uncertainty: Changes in the problem specification, such as arrival of new urgentorders,
cancellation of existing ones, changes in the cost function due to market fluctuations.

Like any classification scheme, this one is not complete. In particular, the fact that a task took more
or less time than expected can be seen as something internal (the plant executed differently from
the expectations) or external (the task that arrived was different from the task envisioned) or as a
combination of both.

One distinctive feature of timed automata is theset-theoretic, rather thanstochastic, manner in which
they define uncertainty. Instead of defining the duration of a task as a probability distribution, it will
be modeled as aninterval of possible durations. Although in many cases computations over sets tend
to be more tractable than computations over probabilities17, one has to ask what modeling style is
more adequate for capturing the reality of scheduling problems. To examine this point we will make
the following additional distinction between uncertainty types:

1. Closed Uncertainty: The task specification for the decision horizon is more or less stable in
terms of the identity of tasks and their arrival times. What is uncertain is the exact duration
or arrival time of the tasks, and perhaps some finitely many conditional variations on the task
specification which are determined and revealed during execution.

2. Open Uncertainty: Task arrival is dynamic during execution and is underspecified. There might
be constraints on the inter-arrival time between tasks of various types butnot more than that.

There have been some attempts to apply timed automata technology to certain variants of open uncer-
tainty, for example [FY04] can prove some properties of real-time scheduling problems in the pres-
ence of both periodic andsporadictasks, with bounds on the inter-arrival time of the latter. However
it is our feeling that for more open-ended problem specifications, the whole scheduling methodology,
timed automata or not, is not the most adequate one, and models in the spirit of queueing theory are
more suitable. This is not to say that queueing theory, which was initially conceived to treat simple

16The be fair, problems where the uncertainty is modeled probabilistically cansometimes be formulated as simple opti-
mization problems.

17Unless one uses exponential distributions which are not always faithfulto the modeled phenomena.

May 31, 2006 AMETIST deliverable 1.1 10



6 TEMPORAL VERSUS NON-TEMPORAL CONSTRAINTS

“atoms” without interactions such as precedence, is fully-equipped to treat the whole range of produc-
tion systems with open uncertainty, but it looks as if the theory of timed automata in its current form
is not.

So let us restrict our attention to closed uncertainty and see what a scheduling algorithm can do in its
presence. We can designate one of all possible “realizations” of the problem (choices of the uncertain
parameters) as a “nominal” one, the one which is likely to occur under normalconditions. With
respect to this realization the problem is deterministic. We can then treat the uncertain problem in
either one of these ways:

• Ignore the uncertainty altogether and provide a solution for the nominal deterministic model.
Then implement the schedule in arobust manner with additional slack time between tasks,
backup for machines in case of breakdown, etc. When such robustness measures have been
taken, the original schedule can be gracefully deformed when a deviationfrom the nominal
model occurs.

• Solve the nominal deterministic problem, and then re-schedule the residual problem (the re-
maining tasks) each time a deviation is observed. This solution is applicable, of course, only to
slow systems.

• Compute a scheduling strategyoffline using control synthesis algorithms for timed automata.
Such a strategy covers all the contingencies that may occur in the actual execution, but the
reaction need not be computed by rescheduling the whole problem online, but rather by a lookup
table. This was the approach taken in [AAM06]. In the case of temporal uncertainty in task
durations, the performance of the strategy thus obtained was very close tothat of a clairvoyant
scheduler.

Although one may argue that the latter approach will not scale up, and that the representation of
the scheduling strategy can become too space consuming for certain applications, we believe that
this approach, can eventually lead to interesting solutions for problem admittingclosed uncertainty.
The advantage of timed automata for posing such problems is in the natural wayalternating fixpoint
computations can be formulated and solved, while a constraint-based approach will need to formulate
the problem using a long alternation of quantifiers (ormin andmax operations). Even if the ultimate
working solution to the problem of dynamic scheduling will eventually use simplertechniques, the
semantic insights gained by looking at the scheduling problem as a dynamic system will remain
valuable.

6 Temporal versus Non-Temporal Constraints

Large parts of the optimization that takes place in operations research is notat all of a temporal
nature. For example problems like bin packing, or optimal placement of production sites to reduce
transportation costs are simply combinatorial optimization problems that do not benefit at all from
their encoding using automata. Some problems in scheduling mix both temporal andnon-temporal
reasoning: for example, if we have to produce large volumes of different materials, each quantity
being much beyond the capacities of a single machine or container, then, in addition to resolving
conflicts between the jobs, one has to choose among the infinitely-many ways topartition the bulk
quantities into smaller ones.

May 31, 2006 AMETIST deliverable 1.1 11



REFERENCES

Although one can think of modeling such situations with timed automata augmented with auxiliary
real-valued variables which are assigned non-deterministically, it seems that such problems are not
the best advertisement for the use of automaton-based models in scheduling.

7 Constraints versus Optimization

Scheduling is a constrained optimization problem having two ingredients, theconstraintsand thecost
function. In the job-shop problem, the cost function is trivial and most of the burden is to find the
best out of the (exponentially many) ways to satisfy the constraints.18 Part of the difficulty of the
problem comes from the fact that apart from the precedence and resource constraints, the problem is
not sufficiently constrained, and tasks can, in principle, be executed any time. On the other hand, when
release timesanddeadlinesare associated with jobs and tasks, the decision horizon can be partitioned
into segments, in each of which only a small subset of the tasks can be executed.19 These additional
constraints can make the problem easier to solve satisfactorily because among the fewer solutions that
remain, the variability in the cost would be typically smaller.

How are methods based on timed automata influenced by the level of constrainedness? A priori,
adding more constraints, reduces the number of runs in the automaton that correspond to feasible
schedules, which is a positive feature for a search-based algorithm. Onthe other hand it is a well-
known fact about constraints satisfaction that the hardest problems arethose that are close to the
feasibility/infeasibility boundary. Current methods for finding schedules using timed automata work
in a chronological manner (forward or backward in time) and for such hard problems, the infeasibility
is likely to be discovered very deep inside the search tree. Perhaps some ideas such as “learning” in
satisfiability problems can be helpful in this context.

8 Conclusions

This report presented insights and improved understanding of scheduling problems gained through
the AMETIST project. It can be viewed as another step in the long journey from theory topractice
and back. The AMETIST case studies provided the academic partners with very valuable feedback
about the applicability and limitations of their techniques and tools, and a better understanding of the
real-world niches where timed automata technology, or a future technology partly inspired by it, can
find use. Perhaps a new class of models that somehow combines the advantage of time automata in
expressing complex interacting objects and of more statistical “macro” methodswill emerge to treat
the problem of dynamic scheduling in its full generality.

References

[AAM06] Y. Abdeddaim, E. Asarin and O. Maler Scheduling with Timed Automata, Theoretical
Computer Science354, 272-300, 2006.

18For more complicated cost functions, which are often used to express “soft” constraints, the situation may be different.
19Such information can be extracted by static analysis also for problems thatdo not have explicit constraints of this type,

but it seems that explicit absolute-time constraints restrict the solution space more effectively.

May 31, 2006 AMETIST deliverable 1.1 12



REFERENCES REFERENCES

[BFK+01] G. Behrmann, A. Fehnker, T. Hune, K.G. Larsen, P. Pettersson,J.M.T. Romijn and
F.W. Vaandrager, Minimum-cost Reachability for Priced Timed Automata,HSCC’01,
LNCS 2034, 147-161, 2001.

[FY04] E. Fersman and W. Yi, A Generic Approach to Schedulability Analysis of Real Time
Tasks,Nordic Journal of Computing11, 2004.

[JM99] A.S. Jain and S. Meeran, Deterministic Job-Shop Scheduling: Past, Present and Future,
European Journal of Operational Research113, 390-434, 1999.

[LL73] C.L. Liu and J.W Layland, Scheduling Algorithms for Multiprogramming inHard Real-
Time Environment,Journal of the ACM20, 46-61, 1973.

[MSB98] K.N. McKay, F.R Safayeni, and J.A. Buzacott, Job-shop Scheduling Theory: What is
Relevant?,Interfaces18, 84-90, 1998.

May 31, 2006 AMETIST deliverable 1.1 13


