Model Classification

Oded Maler
VERIMAG

May 20, 2006

AMETIST DELIVERABLE 1.1

Project acronym: AMETIST

Project full title: Advanced Methods for Timed Systems
Project no.: IST-2001-35304

Project Co-ordinator: Frits Vaandrager

Project Start Date: 1 April 02

Duration: 36 months

Project home pagdéntt p: / / aneti st. cs. utwente. nl/

1 INTRODUCTION

1 Introduction

This deliverable is intended to classify scheduling problems in a way thataeilithte the task of
identifying the, hopefully non empty, niche for timed automata technology in thedsding land-
scape. Such a classification is not an easy task, especiallgdbscheduling problems, because, to
rephrase Tolstoy, each scheduling problem is unhappy in its own ways tipaoblems do not classify
simply according to a small number of orthogonal decision variables. Mergesince scheduling
problems appear almost everywhere, it is not realistic to expect an €kfeaalassification encom-
passing the theory and practice of so many domains of human activity, thieeneager allocation of
person months to this task. Nevertheless, in what follows we propose saha ieatures that parti-
tion the space of scheduling problems. These properties are of diffdraracters, some refer to the
meta-level (academic versus real), some to the application domain (manimgetensus computing)
and some refer to specific technical features of mathematical models (bextaiaus uncertainty).
As mentioned above, these variables are not independent and, inréacften correlated. Naturally,
the classification will be of higher resolution when it comes to areas cobgrdth AMETIST project,
and which are more relevant to timed automata. The presentation will be ardanithe following
format: we will discuss each classification feature and describe whétemnplications of of being
in either side of the spectrum that it spans. In the case that the value ddrible in question has
some strong implications with respect to TA technology, we will comment on thatghss on the
dependency between variables (for example: in application domain X, Waigegroblems tend to
have technical feature Y). At the final section we will try to summarize.

Before embarking on this journey, let us clarify what do we mean Ioyoalel To start with, we
have some “reality” which consists of physical entities such as productiea lma factory, orders,
deadlines, workers and machines. A model of this part of reality is a detrofl objects (words,
mathematical symbols, diagrams, computer programs) whose formal inter mghatie somehow
reflect the important aspects of the concrete situation. Durations, greoednd resource constraints
are examples of important aspects, while the maiden name of the mother of thaatdigers is not.
A good model provides for some kind of “virtual” analysis, using pencd @aper or computers,
whose formal outcome corresponds to the concrete situation. For insiatioe formal analysis
results in a solution in the form of a Gantt chart satisfying certain constraigsvould like this
chart to be realizable in the real world with a proper translation of the tsv@mthe chart to actual
initiation and termination of production steps at specific points in (real) time.

In the above discussion we talked abmstancef situations (say, planning of operations for factory

X in week Y) and their corresponding instances of models. More genewvallywould like to speak

of classef models, or modeschemegin the data-base sense). In the concrete world these classes
correspond to similar situations, for example planning for the same factalifferent weeks. Each
instance will be different but will typically employ the same type of machinesdyets and con-
straints. A more general class of models may speak of situations whichrareaoto all factories in

a given sector. In the abstract world such model classes correptyyks of problems in the math-
ematical sense, for example, systems of constraints restricted to someefgriiingar), or classes of
timed automata having certain features. It is mostly at this level of model cleddhis deliverable

is situated.

May 31, 2006 AMETIST deliverable 1.1 2

2 REAL VS. ACADEMIC MODELS

2 Real vs. Academic Models

One major distinction is between models coming from the theoretical/academic vatlchadels
intended to represent actual problems coming from practice. The mugmasuse of these two types
of models do not always coincide and their common use of the wadklis sometimes a source for
misunderstanding. These purposes are summarized below:

e Theoretical modelsthe goal is to capture some of the essential and generic features ofa clas
of concrete situations, in order to be able to say something rather gehetalsaich situations.
The more mathematically inclined and established is the community involved, the moitgewill
models tend to be stylized and ignore non generic details. The outcome dftihabmodels
can be theorems, for example on the properties of optimal schedules aeneis of solutions,
classification in terms of computational complexity, or efficient solution algorith&uch re-
sults, especially when they are analytic, are very hard to obtain in thengeesé non generic
details. While this approach is very productive for the advancemenieric there is a risk
that a theoretician will focus on those details that allow him or her to provee¢hedand will
tend to neglect and classify as non generic those that are not of mutdr tise paper industry.
A typical example is the concentration of the operation research (OR) coitynoardetermin-
istic offline problems, partly because these models are amenable to formukatieciaion or
optimization problems whose complexity can be established. A good examplesefid ab-
straction of this type can be found in program verification where abstoaeputational models
of transition systems were used, rather than models based on specifamnoing languages.

e Practical modelsthese models should capture all relevant details for the actual operétion o
concrete plant, here and now. Facts like national holidays, trade umeatye importance of
customers and many other details that may be of no interest to the theoretéside critical
for correct or optimal operations. Sometimes these details, like many otheadyrifi, go
without saying and escape formalization. However, if we like to mechanizedheduling
process as much as possible, we need to formalize many of%HEme. formalization of less
and less structured information in a form amenable to automatic deduction mnpaditdion is
a known problem in Al, knowledge engineering and natural-languam@epsing.

Perhaps the differences between these types of models are best tednifieshile comparing the
classicaljiob-shopproblem [JM99] and the Lacquer Production case study provided bypiiix The
job-shop problem is a crystallized formulation of one of the fundamentalifes of scheduling,
namely the interaction betwegwecedenceand resourceconstraints. The beauty of the problem
lies in its simplicity, which is sufficient for understanding why it is harder theonyex) linear pro-
gramming due to the disjunctive form of the resource constrains, to prov@itsardness, to illustrate
simple heuristic solutions such as greedy execution, give bounds on theadidetween optimal and
heuristic solutions, etc. On the other hand, the problem is very simplified @& cover many re-
alistic features. For example it assumes that every step consumes exaathsounrce/machine, a fact
which already does not allow the treatment of containers. It assumesatfasep can be performed
only on one type of machine. It uses the “maximal tardiness” (makespam) @stimization criterion

Newton’s toy problem of point masses involved a lot of simplifications canegto real planets.

20f course, the connection with the concrete reality of software produstionld later be re-established in order to
make tools based on such abstractions usable in practice. Howeveritigsgmined while studying the abstract models
were less likely to be obtained if one had to deal with real programs.

8t would be hard to prove nice theorems about such models, though.

May 31, 2006 AMETIST deliverable 1.1 3

3 APPLICATION DOMAINS

while it is evident that in real life the termination timesaif jobs do matter, for better (delivery) or
worse (inventory) and that some deadline constraints are harder thens.ofach of these and other
restrictions can be relaxed, rendering the mathematical model more banodjugly.

The Axxom case-study, represents the opposite side of the spectrinais tontainers allocated to
each job during its lifetime, it has constraints on the waiting time between steps jatirdependent
conditional activities such as rinsing, it has deadlines and a non-trizslfanction and has to take
into account the non-regular structure of the Julian calendar and its y®fidS8o a priori, such a
practical problem seems to be much harder than the abstract job-shnerpfoOn the other hand,
this problem is “solved” every day (or week, or month) by humans and @deisrious sorts, so where
is the catch? This can be explained by the fact that if one does not ingjkilwel optimality (which is
never really the issue) and applies some common-sense ideas suchlazsmesg or non overtaking
(which is very plausible hypothesis for pipeline-like jobs) to reduce thdisolspace, one can easily
find reasonable solutions.

The moral of this section is that the practical solution of real-world probleoes shot necessarily
involve the use of the theoretical and algorithmic state-of-the-art in the dorithi@ best available
abstract scheduling algorithm is not necessary nor always sufficiedgliver real viable solutions.
However, we strongly believe that if one wants to scale up and attack prebltose solution admits
a serious computational bottleneck, focusing on the essential featutesatis®e the combinatorial
explosion is a better strategy in the long run than attacking immediately real dgteolgdms.

Where do timed automata stand here? As has been demonstrated in the peyjearthmodel in
an elegant way clean theoretical problems such as the job-shop angrégskproblems. To go
beyond that, they pay the performance price that any other methodoldglltves richer constraint
would pay. Adding relative deadlines and more complex temporal const@etsnight lose the
optimality results specific to the job-shop problem such as non-lazinessngAdwre sophisticated
cost functions, as has been demonstrated in the wotkearly-priced timed automatfBFK T01],
we are still in the domain where the strong theoretical results for timed automdtealtbough the
performance may deteriorate. Features needed to capture more compitarsitaan be incorporated
into timed automata, losing perhaps the decidability feature which, anyway, rdiieseem to be
pertinent for synthesis and scheduling problems. So, along the theaigdiice axis, timed automata
do not seem to be inferior nor superior to alternative formulations of thediding problem. As will
be indicated in the sequel, a major disadvantage of timed automata is manifestetdlém® where
non-temporal resource constraints are dominant, while their potentiahtadjalies in the effective
modeling of uncertainty and more intuitive representation of the system dysamic

3 Application Domains

Due to the universality of the scheduling and resource allocation problexppé&ars everywhere and
no attempt is made to be exhaustive. We will talk of three large classes ofatplidomains which,
needless to say, are far from being internally homogeneous.

4Even the trivial but tedious translation of time between decimal numbermsusiminutes format is an issue for appli-
cability and usability.

5Some explanation can be given in terms of the difference between theesymtactic notion oflescriptive complexity
and the inhererihternal complexityof problems which need not coincide.

SFor job-shop problem this is not a heuristic but an exact optimization.

May 31, 2006 AMETIST deliverable 1.1 4

3.1 Manufacturing 3 APPLICATION DOMAINS

3.1 Manufacturing

We use this generic term to denote “traditional” industries that transformsigédyentities (raw mate-
rials) into other entities (products) using well-known processes (récipée whole field known as
operations researcbriginated from the need to organize the production process in an ecailymic
competitive manner. Many of these decisions are design decisions fstrectimg the plant. Other
decisions are related to machine renovation, marketing and inventory paoliciels are not directly
related to scheduling. Scheduling problem manifest themselves typically ioltbvihg form: given
the factory as is, with its production capabilities and constraints, with inputsdef®rand material,
find an optimal or reasonable way to orchestrate the production so agiiacerthe output in a timely
and economic manner, while meeting the deadlines associated with the orders.

The scheduling problem is meaningful when there lawanded resourcethat can be used for the
production ofseveralproducts or product instances. Although these resources aralteushey
can be used for one purpose at a time and conflicts occur when we hdeeitie at which order to
allocate the resource to competing tasks. Different solutions corres$palifterent ways of resolving
these conflicts, and the cases which are meaningful from an economiopwiew occur when these
solutions differ significantly among themselves in quality (cost, meeting deagliféisis is not the
case, choosing an arbitrary schedule would do. In a more modern faromkfe scheduling problem
is referred to as thealue chain management problemhere more holistic considerations including
transportation between different production sites (or subcontrachaventory costs, or financing are
integrated into the decision process.

We mention briefly some features that seem to be common to problems coming fsafortain and
their corresponding models:

1. In many (but not all) of manufacturing domains, the time scale of the opesatianuch larger
than that of computation. Typical production steps may take hours andaddythe process of
planning a weekly schedule can afford many hours of computation onrpdweachines’

2. The cost of individual decisions can be very significant, especidignwone deals with large-
scale operations such as refineries and other chemical plants.

3. Most such operations involve humans and physical processeg wkast performance cannot
be predicted exactly. Moreover, the problem specification may changeydaxecution due to
machine breakdown, order cancellation and more. Hence the scheldosenshould bebust
under a reasonable amount of disturbances, and cannot be basederrare and complex
opportunities that are possible only in a short temporal window. Moredveeems that the
best approach to these problems is not fully-automatic but more in the spait imiteractive
decision-support system where the user may force some decisiongtahd computer do
some exhaustive computations only for some parts of the problem.

3.2 Transportation

In transportation problems, the work to be done is given in terms of quantftgsools and persons
to be transferred between geographic locations, using the transpontditastructure which includes
vehicles, routes and junctions. Train and airline schedules are faitjaregnd periodic and are also

"Here too, one can find exceptions: when a machine in a production linksbdewn, a quick solution should be found
without rescheduling the whole production. However, in this case we l&iegabout different granularity.

May 31, 2006 AMETIST deliverable 1.1 5

3.3 Computing and Communication 3 APPLICATION DOMAINS

subject to safety constraints. However, more often than not, there expected delays that call for
rescheduling, which is not always lead to good results, as many of us hagatexperienced.

Tracks, junctions, air-corridors and landings are the shared esoéor which decision should be
made. We do not elaborate further on this application domain because ibvsisidied extensively
within AMETIST.

3.3 Computing and Communication

In computing, the goods to be transformed and transported are piece®mhation realized by
low-energy electronics. Shared resources are computation devidessyrocessors or lower-level
functional units which transform data from one form to another, commtiaicahannels that trans-
port these data between different production and consumption sitehareigperipherals such as
printers and other I/O devices. We make a quick review, roughly in clhogiaal/historical order, of
some of the most common manifestations of scheduling problems in this applicati@irdo

Time-Sharing Operating Systems In time sharing, a CPU serves a variety of users, some interac-
tive, working in front of a terminal, and some others issuing jobs that haxentin the back-
ground. The scheduler is part of the operating system and its role isddhgivnteractive users
the illusion that the CPU works for them (they are sufficiently slow not to neotieaifference),
and execute the other programs as well. In addition, slow resourceascimters should also
be allocated as wefl. Since the pattern of demand of these computational resources is not
known in advance, there is no use, to plan for a specific optimal scheddeproblems was
resolved by assigningriorities to tasks according to their importance, with obvious preference
to system tasks such as interrupt handlers.

Real-Time Systems The work in this domain is motivated by the realization of (parallel) control
loops by sequential computers. These are typigadlsiodic tasks, each of which has to be
performed in a given frequency, and each has a known bound onrigiatuon the given
execution platform. From the scheduler’s point of view, the frequerquirements can be
expressed in terms oklease timesnd deadlines Liu and Layland in their seminal paper
[LL73] studied this problem and showed some analytic bounds on scligditylaf such a set
of computations on a given processor. Two basic scheduling policieamonly used. The
first is earliest-deadline firsEDF), which means always to execute the task whose deadline
is the closest (recall that a single machine is used here). The EDF stiategsh common
sense and optimal. The other strategy knownass monotonidRM), always gives priority to
enabled tasks with the highest frequency of execution. While this fixeditygrymlicy is not
optimal, it is easy to implement by methods borrowed from time sharing. It sheuttbted
that both policies use preemption. The weakness of the model lies in the dgsuthpt tasks
are considered as independent, that is, there are no precedestraiots? Other simplifying
assumption is that tasks do not occupy resources other than the CPUnatitetbverhead of
context switching due to preemption is negligible. Various extensions to tludiséep were
suggested in order to treat more realistic situations. One of those has dveraléamous and
costly bug in the Mars Rover.

8The allocation of more than one resource to a job gave rise to the firdodkadProving the absence of deadlocks in
resource-allocation protocols became subsequently one of the §est saudied in program verification.
SExcept, of course, precedence between subsequent instancesafith task.

May 31, 2006 AMETIST deliverable 1.1 6

3.3 Computing and Communication 3 APPLICATION DOMAINS

Scheduling Parallel Programs Parallelism in computing is a fashion that periodically becomes pop-
ular in certain quarters. The idea is to execute programs, even if writteg assequential
programming language, on a network of (typically identical) processansh $rograms can
be decomposed into blocks that constitute the basic tasks. Precedestraintgiamong those
tasks are deduced frodata-flowanalysis of the program, where the execution of each block
should be preceded by the execution of those pieces of code thatcprtthidata it uses as
input. This precedence graph can be seen as both a generalizationjolb thleop problem
(a richer form of precedence) and a restriction of it (machines ardiedénand the problem
is symmetric unless communication cost is taken into account). Specific cldgaegmms,
especially those used in scientific computing, such as matrix operations, adtittifar paral-
lelization schemes. The whole topic is currently undergoing a renaissaade the decision of
semi-conductor industry to move to the so-caltealti-corearchitecture with several processors
on a chip.

Instruction Level Parallelism At a smaller scale, scheduling can be performed also at the level of
themicro architecturewhere a processor has a number of functional units for performitig ar
metic and logical operations and it may try to parallelize some executions thda@énde-
pendent. Moreover, in certain cases, the amount of parallelism in thevéwardrchitecture
is sufficient for engaging ispeculativeexecutions, where precedence constraints are not fully
respected. That is, if a task has only few outcomes, it is possible to stentiting in parallel
several instances of a successor task with each of the possible outcéthen the first task
terminates and the outcome becomes known, those task instances that divesgand to the
outcome are aborted. While, in principle, this problem is very similar to schegatirparallel
machines, there is a quantitative difference in the time scale and in the compaiteg®ources
available when decisions are to be taken, and these differences mapaéefteechoice of solu-
tion techniques.

Network Scheduling Communication channels at various levels of granularity constitute a particular
resource in the computational infrastructure with an ever increasing inmgerts&Some exam-
ples of scheduling problems include the allocation of time slots in a field bus in distdb
control systems, the allocation of switches in routing networks or the allocatifvaquencies
in wireless networks. Some of these problems have a “bulk” charactamuthber of individ-
ual “tasks” is very large and models where individual tasks are repted explicitly are of no
practical use. Instead, as in the case of scheduling policies for timmglmgrerating systems,
statistical models based on queuing theory are more suitable.

Server Scheduling Another example of a class of massive resource allocation problems isrenco
tered in the operation of large distributed data-base systems (via the webtbeacommuni-
cation infrastructure) where a “farm” of servers processes diftéygpe of queries coming from
all over the world. Here, as in the routing problem mentioned in the previgosestion, the
modeling style is more close to queuing theory.

What are the major characteristics of scheduling problems in the computatieeirdacompared to
problems in manufacturing?

1. Time scale is a major difference with respect to most physical proceBsaguction steps in
computation will typically have a very short duratfSrand one can apply traditional optimal
and nearly-optimal solution techniques only for very restricted decisioad .

190f course one may find exception, for example if we want to schedute doster or over the Internet a heavy sci-

May 31, 2006 AMETIST deliverable 1.1 7

4 TIME SCALES AND COMPUTATIONAL RESOURCES

2. The economic significance of better schedules is of a somewhat difigraracter. In many
cases better resource allocation policies may improve the tradeoff betveeeostiof the hard-
ware infrastructure and the quality of service. The problem is that, unligsigal production,
improving the throughput of a computational system by buying few moreggsmrs is not such
a big expense given the price decline in computer technology. Hencesedaction might be
significant only for companies whose servers answer queries ontgtgrsgale such as banks
and search engines.

Another niche of the information market where optimal scheduling may be ngfahis em-
bedded computinglf a more efficient scheduling policy can reduce, even by a fractian, th
computational resources in a car, or in a cell phone, multiplying these salginthe number
of products sold may lead to economic significance. And indeed, optimizaticzo#tef em-
bedded hardware, either by more efficient circuit synthesis or by nfficgent scheduling is a
very hot topic, sometimes referred tolerdware-software Co-desigihlowever, as we discuss
below, such embedded systems are also limited in the computational resoescearthinvest

in the additional task of solving the scheduling problem itself, if the latter is tolved online.
Offline solutions may be more feasible but restricted to dedicated applications.

3. Finally, unlike real manufacturing, operations in the computation domawftame performed in
a completely automated fashion. This makes them, in certain cases, much moretilntapie
than operations that involves matter and hurhaasd since the entity that executes the schedule
is also a computer, sophisticated and non-intuitive schedules which aréohiarplement in a
human environment can be realized in this context.

Timed automata have been demonstrated to be capable of modeling phenonathariafufacturing
and computation. In general they seem to share with constraint optimizationawsetie infeasibility
of solving large problem in real time, where one has to resort to simple saddiah as priority-based
scheduling that do not even attempt to approximate the optimum.

4 Time Scales and Computational Resources

One important characteristic feature of classes of scheduling problenesridationship between the
following factors:

1. The length (in absolute time) of the decision/execution hotzfum which a solution is sought;

2. The time scale of the process to be scheduled, that is, the duration d€a gpecution step.
This factor determines the size of the scheduling problem: if the decisiononoazd the
activity density are kept fixed, the shorter is the average duration, the tasks have to be
scheduled in the same temporal window;

3. The computational complexity of finding optimal or satisfactory schedaldbé class of prob-
lems in question. Note that problems that have the same number of tasks mayadiitally
in complexity;

entific computation which would take years on a single computer, we maythme-scales that approach those of typical
manufacturing.

Hworst-case execution time (WCET) of modern processors with cachecisahle exception.

12This issue, in fact, is not really separable from the question of uncertaify discusses next.

May 31, 2006 AMETIST deliverable 1.1 8

5 DETERMINISM VERSUS UNCERTAINTY

4. The available computing power, measured by the time it takes to perforsiadtep in the
scheduling algorithm (exploring a path in the case of timed automaton refagsenfinding a
satisfying assignment in a constraint-based approach).

To illustrate the significance of these factors consider the following tworetamsituations taken from
the above mentioned application domains.

Example 1 Suppose we have to plan theeklyschedule of a factory. The decision horizon is in the
order of a week, say00 hours. Assuming that the average duration of execution stepsasirs,
and the factory has: machines, the scheduling problem involves alaut tasks'® Assuming that
planning takes place in the weekend and that all orders for the nextaveddown at that time, the
computing effort that can be dedicated to the problem is aréartburs multiplied by the power of
the available computers. This may be sufficient for finding reasonablet(dptimal) results for such

a problem. Typically, computers are cheap compared to other machinessmuaes, so if optimal
decisions have important economic impact, additional resources can batedldo the computation
to improve the quality of the solution (although NP remains NP).

Example 2 Suppose we want to schedule a set of instructions on the parallel madribeature of

a processor. If we deal with straight line programs without branchiregkmow in advance the set
of instructions to be executed. Hence we can perform the optimizatioongpile time which gives

us sufficient computation tim¥. The situation is radically different when we deal with branching
programs where the stream of instructions to execute is not known ine&l{iéie orders to a factory
for long time horizons). In this case the scheduler has to vemline taking as input the list of
instructions accumulated in its execution stack at a given moment. If we deahyifittructions,
we have to solve a scheduling problem fotasks within a time bound which is of the same order
of magnitude as the execution ofinstructions, something which is totally infeasible unless we use
an auxiliary computer which is orders of magnitude faster than the pradesgoestion. But in this
context, the optimization should be performed using the resources véthesame processovhose
operation we want to optimize!

One can see that in the scheduling of fast processes, the importaneetiofiginessaspect of the

solution to the scheduling problem dominatesduality of the solution® In such situations, simple
and fast solutions seem to be the only viable alternative. As stated earliategesting niche would

be embedded systems (rather than general-purpose processorsiveiiixed (branching) program,
which might change infrequently, only when the system is upgraded.uebrgograms, investment
in doing the optimization in compile time may pay off.

Timed automata are rather neutral with respect to this issue. Computing slpattes in timed au-

tomata within a very short time seems to be as infeasible as doing it using otheigtezthbased on
constraints. Quick heuristic solutions can be implemented using the timed automptesentation,

although the advantages of using this representation still needs to be dextezhs

5 Determinism versus Uncertainty

An issue that kept on surfacing in the previous discussion, nadetlrminisnversusuncertainty
is very important and is not so much well-studied in the traditional schedulingtliter, mostly due

BThese are gross estimations, of course, the task durations nay eatyimes may be different, etc.
14provided, of course, that the object code is refined to contain low-tésestives to the micro architecture.
15Similar issues have been studied under the titlargftime computatian

May 31, 2006 AMETIST deliverable 1.1 9

5 DETERMINISM VERSUS UNCERTAINTY

to the lack of conceptual tools for expressing such phenortferatraditional optimization one has
to choose between alternatives, and each choice leadsrigae outcomeavhich is obtained by sub-
stituting the choices in the constraints and cost function. This is exactly thé@itia the classical
job-shop problem, where the jobs to be executed are fixed as well as tinafroth on the given ma-
chines. In this setting, a sequence of scheduling decisiompletely determindle actual execution
and its cost. In reality, scheduling problems are corrupted with a large d@rabuncertainty, a fact
that led some authors to commefiThe static problem definition is so far removed from job-shop
reality that perhaps a different name for the research should be caesidgMSB98]. As we feel
that the treatment of uncertainty could be a major advantage of timed automaté| elaborate on
this point.

One can classify the uncertainty concerning the operations of a prodydiot into two major types:

1. Internal uncertainty All unexpected events that may change the production capacity and per-
formance of the plant, including machine breakdown or slowdown, strikes)g estimations
of the time to perform a step, or critical workers that need to go to the dentist;

2. External uncertaintyChanges in the problem specification, such as arrival of new uogeeits,
cancellation of existing ones, changes in the cost function due to marketdtions.

Like any classification scheme, this one is not complete. In particular, théhtca task took more
or less time than expected can be seen as something internal (the plartedxdifferently from
the expectations) or external (the task that arrived was different fhe task envisioned) or as a
combination of both.

One distinctive feature of timed automata is fet-theoreticrather tharstochasticmanner in which

they define uncertainty. Instead of defining the duration of a task asbalpifiby distribution, it will

be modeled as anterval of possible durations. Although in many cases computations over sets tend
to be more tractable than computations over probabititjesne has to ask what modeling style is
more adequate for capturing the reality of scheduling problems. To exanmneoiht we will make

the following additional distinction between uncertainty types:

1. Closed Uncertainty The task specification for the decision horizon is more or less stable in
terms of the identity of tasks and their arrival times. What is uncertain is thet dxaation
or arrival time of the tasks, and perhaps some finitely many conditionaltieersaon the task
specification which are determined and revealed during execution.

2. Open UncertaintyTask arrival is dynamic during execution and is underspecified.€eliméght
be constraints on the inter-arrival time between tasks of various typembuntiore than that.

There have been some attempts to apply timed automata technology to certaits\@rigoen uncer-
tainty, for example [FY04] can prove some properties of real-time schegptioblems in the pres-
ence of both periodic ansporadictasks, with bounds on the inter-arrival time of the latter. However
it is our feeling that for more open-ended problem specifications, théevdobeduling methodology,
timed automata or not, is not the most adequate one, and models in the spiritiefrgutheory are
more suitable. This is not to say that queueing theory, which was initially agretéo treat simple

%The be fair, problems where the uncertainty is modeled probabilisticallp@a@times be formulated as simple opti-
mization problems.
Unless one uses exponential distributions which are not always faithfoé modeled phenomena.

May 31, 2006 AMETIST deliverable 1.1 10

6 TEMPORAL VERSUS NON-TEMPORAL CONSTRAINTS

“atoms” without interactions such as precedence, is fully-equipped tithreavhole range of produc-
tion systems with open uncertainty, but it looks as if the theory of timed automata uritnt form
is not.

So let us restrict our attention to closed uncertainty and see what a fickyealgorithm can do in its
presence. We can designate one of all possible “realizations” of tiiepndchoices of the uncertain
parameters) as a “nominal” one, the one which is likely to occur under naramalitions. With
respect to this realization the problem is deterministic. We can then treat tketaingproblem in
either one of these ways:

e Ignore the uncertainty altogether and provide a solution for the nominaingieistic model.
Then implement the schedule inrabust manner with additional slack time between tasks,
backup for machines in case of breakdown, etc. When such robsstressures have been
taken, the original schedule can be gracefully deformed when a deviationthe nominal
model occurs.

e Solve the nominal deterministic problem, and then re-schedule the residiledipr (the re-
maining tasks) each time a deviation is observed. This solution is applicablayrsi; only to
slow systems.

e Compute a scheduling strateg¥fline using control synthesis algorithms for timed automata.
Such a strategy covers all the contingencies that may occur in the acaaltiex, but the
reaction need not be computed by rescheduling the whole problem onlirratheer by a lookup
table. This was the approach taken in [AAMO06]. In the case of tempoic@ntainty in task
durations, the performance of the strategy thus obtained was very cltis# tf a clairvoyant
scheduler.

Although one may argue that the latter approach will not scale up, and #haephnesentation of
the scheduling strategy can become too space consuming for certain appiicave believe that
this approach, can eventually lead to interesting solutions for problem adndttisgd uncertainty.
The advantage of timed automata for posing such problems is in the naturaltemating fixpoint
computations can be formulated and solved, while a constraint-baseagappvidl need to formulate
the problem using a long alternation of quantifiersifan andmax operations). Even if the ultimate
working solution to the problem of dynamic scheduling will eventually use sintplhniques, the
semantic insights gained by looking at the scheduling problem as a dynantéensysll remain
valuable.

6 Temporal versus Non-Temporal Constraints

Large parts of the optimization that takes place in operations research & abtof a temporal
nature. For example problems like bin packing, or optimal placement of ptiodusites to reduce
transportation costs are simply combinatorial optimization problems that do nefitoat all from
their encoding using automata. Some problems in scheduling mix both temporabastdmporal
reasoning: for example, if we have to produce large volumes of differaterials, each quantity
being much beyond the capacities of a single machine or container, thenditioado resolving
conflicts between the jobs, one has to choose among the infinitely-many wpgstition the bulk
gquantities into smaller ones.

May 31, 2006 AMETIST deliverable 1.1 11

REFERENCES

Although one can think of modeling such situations with timed automata augmenteduxiliargy
real-valued variables which are assigned non-deterministically, it seemnsutttaproblems are not
the best advertisement for the use of automaton-based models in scheduling.

7 Constraintsversus Optimization

Scheduling is a constrained optimization problem having two ingredientsptigraintsand thecost
function In the job-shop problem, the cost function is trivial and most of the bursldéo find the

best out of the (exponentially many) ways to satisfy the constr&inRart of the difficulty of the
problem comes from the fact that apart from the precedence angrcestonstraints, the problem is

not sufficiently constrained, and tasks can, in principle, be execujettha@. On the other hand, when
release timeanddeadlinesare associated with jobs and tasks, the decision horizon can be partitioned
into segments, in each of which only a small subset of the tasks can bdexkEtlhese additional
constraints can make the problem easier to solve satisfactorily becausg tmadewer solutions that
remain, the variability in the cost would be typically smaller.

How are methods based on timed automata influenced by the level of cordtieds@ A priori,
adding more constraints, reduces the number of runs in the automaton trestpomd to feasible
schedules, which is a positive feature for a search-based algorithntheGother hand it is a well-
known fact about constraints satisfaction that the hardest problenth@se that are close to the
feasibility/infeasibility boundary. Current methods for finding schedug#sgitimed automata work
in a chronological manner (forward or backward in time) and for sucti peoblems, the infeasibility
is likely to be discovered very deep inside the search tree. Perhaps semsesitth as “learning” in
satisfiability problems can be helpful in this context.

8 Conclusions

This report presented insights and improved understanding of schgdubblems gained through

the AMETIST project. It can be viewed as another step in the long journey from thequyatdice

and back. The METIST case studies provided the academic partners with very valuable feedback
about the applicability and limitations of their techniques and tools, and a betteraianding of the
real-world niches where timed automata technology, or a future technotly mspired by it, can

find use. Perhaps a new class of models that somehow combines the gdwafitiene automata in
expressing complex interacting objects and of more statistical “macro” methitdasnerge to treat

the problem of dynamic scheduling in its full generality.

References

[AAMO6] Y. Abdeddaim, E. Asarin and O. Maler Scheduling with Timed Automataeoretical
Computer Sciencg54, 272-300, 2006.

8For more complicated cost functions, which are often used to expse& tonstraints, the situation may be different.
1%Such information can be extracted by static analysis also for problemdaimatt have explicit constraints of this type,
but it seems that explicit absolute-time constraints restrict the solutioe spaxe effectively.

May 31, 2006 AMETIST deliverable 1.1 12

REFERENCES REFERENCES

[BFK*t01] G. Behrmann, A. Fehnker, T. Hune, K.G. Larsen, P. PetterssdbhT. Romijn and
F.W. Vaandrager, Minimum-cost Reachability for Priced Timed Automid&CC’'0],
LNCS 2034, 147-161, 2001.

[FYO04] E. Fersman and W. Yi, A Generic Approach to Schedulability Arialg$ Real Time
Tasks,Nordic Journal of Computindg1, 2004.

[IM99] A.S. Jain and S. Meeran, Deterministic Job-Shop Scheduling: Pa@sent and Future,
European Journal of Operational Researth3, 390-434, 1999.

[LL73] C.L. Liuand J.W Layland, Scheduling Algorithms for Multiprogramming-ard Real-
Time EnvironmentJournal of the ACM20, 46-61, 1973.

[MSB98] K.N. McKay, F.R Safayeni, and J.A. Buzacott, Job-shop 8ualieg Theory: What is
Relevant?|nterfacesl8, 84-90, 1998.

May 31, 2006 AMETIST deliverable 1.1 13

